不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为 1 2 .
(1)试求袋中蓝球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
暑假期间,部分同学准备开展社会实践活动,决定外出调研某名胜风景点的环境污染情况,为此需在风景点周边住一晚.某旅店只有二人间和三人间两种房型,二人间每晚需50元,三人间每晚需60元,并且二人间的数量不超过9间,三人间比二人间的房间数要少.有同学计算了一下,如果只住二人间,则还有5人无房可住,如果只住三人间,则只剩下l人没地方住. (1)参加此次活动的同学有多少位? (2)同学们此次住宿花费了460元,请你算算,同学租住的二人间和三人间各是多少?
如图,以Rt△ABC的直角边AB为直径的圆O,与斜边AC交于点D,点E是BC边上的中点,连接DE. (1)DE与圆O相切吗?若相切,请给出证明;若不相切,请说明理由. (2)若AD,AB的长是方程x2-10x+24=0的两个根,求直角边BC的长.
某商场为了吸引顾客规定,凡购买200元以上物品的顾客均可获奖,可以直接获得购物券10元,也可以参加摸奖.摸奖的具体方法是:从一个装有100个彩球的盒子中任取一球,摸到红球可获100元的购物券,摸到黄球可获50元的购物券,摸到蓝球可获加元的购物券,而摸到白球则不能获奖.已知100个球中,5个红球,10个黄球,20个蓝球,其余均为白球.小明购买200元以上物品,但是没有立刻抽奖.为了弄明白自己获奖的机会的大小,特别在摸奖台旁边观察,下面图表就是小明观察的结果: 问:(1)小明共观察统计了多少顾客? (2)小明画的条形统计图不完整,请补充完整; (3)在扇形统计图中,“摸蓝球”所在的扇形圆心角为多少度? (4)小明经过观察和比较,选择了比较合算的方式.请说明他是直接拿购物券10元,还是参加了摸奖呢?
解方程:
如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M与轴相切于点C,与轴交于A,B两点,∠ACD=90°,抛物线经过A,B,C三点. (1)求证:∠CAO=∠CAD; (2)求弦BD的长; (3)在抛物线的对称轴上是否存在点P使ΔPBC是以BC为腰的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.