(本小题满分13分)设数列的前项和为,且;数列为等差数列,且。求证:数列是等比数列,并求通项公式;若,为数列的前项和,求。
已知函数(k∈R)为偶函数. (1)求k的值; (2)设,若函数f(x)与g(x)图像有且只有一个公共点,求实数a的取值范围。
已知命题P:若幂函数过点,实数满足。命题Q:实数满足。且为真,求实数的取值范围.
已知函数的定义域是且,,当时,. (1)求证:是奇函数; (2)求在区间)上的解析式; (3)是否存在正整数,使得当x∈时,不等式有解?证明你的结论.
已知抛物线,点,若斜率为的弦过点,且以为弦中点. (1)求抛物线方程; (2)若是抛物线过点的任一弦,点是抛物线准线与轴的交点,直线分别与抛物线交于两点,求证:直线的斜率为定值,并求的取值范围.
如图,在平面四边形中,,分别是边上的点,且.将沿对角线折起,使平面平面,并连结.(如图2) (Ⅰ)证明:平面; (Ⅱ)证明:;(Ⅲ)求直线与平面所成角的正弦值.