(本小题满分12分)若数列的前项和是二项展开式中各项系数的和.(Ⅰ)求的通项公式;(Ⅱ)若数列满足,且,求数列 的通项及其前项和;(III)求证:.
求1+.
求下面各数列的前n项和: (1),… (2) ,…
已知an= (1)求数列{an}的前10项和S10; (2)求数列{an}的前2k项和S2k.
求下面数列的前n项和: 1,3,5,7,…
已知数列{an}的首项a1=2a+1(a是常数,且a≠-1), an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a, bn=an+n2(n≥2). (1)证明:{bn}从第2项起是以2为公比的等比数列; (2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值; (3)当a>0时,求数列{an}的最小项.