设函数,(为自然对数的底).(1)求函数的极值;(2)若存在常数和,使得函数和对其定义域内的任意实数分别满足和,则称直线:为函数和的“隔离直线”.试问:函数和是否存在“隔离直线”?若存在,求出“隔离直线”方程;若不存在,请说明理由.
如图,在六面体 A B C D - A 1 B 1 C 1 D 1 中,四边形 A B C D 是边长为2的正方形,四边形 A 1 B 1 C 1 D 1 是边长为1的正方形, D D 1 ⊥ 平面 A 1 B 1 C 1 D 1 , D D 1 ⊥ 平面 A B C D , D D 1 = 2 .
(Ⅰ)求证: A 1 C 1 与 A C 共面, B 1 D 1 与 B D 共面; (Ⅱ)求证: 平面 A 1 A C C 1 ⊥ 平面 B 1 B D D 1 ; (Ⅲ)求二面角 A - B B 1 - C 的大小(用反三角函数值表示).
已知0<a<的最小正周期, 向量 a = ( tan ( α + β / 4 ) , - 1 ) , 向量 b = ( cos α , 2 ) , 且向量 a × 向量 b = m , 求 2 cos 2 α + sin 2 α + β cos α - sin α .
已知函数 f ( x ) = x 2 t - 2 t ( x 2 + x ) + x 2 + 2 t 2 + 1 , g ( x ) = 1 2 f ( x ) . (I)证明:当 t < 2 2 时, g ( x ) 在 R 上是增函数; (II)对于给定的闭区间 [ a , b ] ,试说明存在实数 k ,当 t > k 时, g ( x ) 在闭区间 [ a , b ] 上是减函数; (III)证明: f ( x ) ≥ 3 2 .
已知数列 a n , b n 与函数 f ( x ) , g ( x ) , x ∈ R 满足条件: a n = b n , f ( b n ) = g ( b n + 1 ) .( n ∈ N * )
(I)若 f ( x ) ≥ t x + 1 , t ≠ 0 , t ≠ 2 , g ( x ) = 2 x , f ( b ) ≠ g ( b ) , l i m n → ∞ a n 存在,求 x 的取值范围; (II)若函数 y = f ( x ) 为 R 上的增函数, g ( x ) = f - 1 ( x ) , b = 1 , f ( 1 ) < 1 ,证明对任意 n ∈ N * , l i m n → ∞ a n (用 t 表示).
已知正三角形 O A B 的三个顶点都在抛物线 y 2 = 2 x 上,其中 O 为坐标原点,设圆 C 是 O A B 的内接圆(点 C 为圆心) (I)求圆 C 的方程; (II)设圆 M 的方程为 x - 4 - 7 cos θ 2 + y - 7 cos θ 2 = 1 ,过圆 M 上任意一点 P 分别作圆 C 的两条切线 P E , P F ,切点为 E , F ,求 C E ⇀ , C F ⇀ 的最大值和最小值.