在平面直角坐标系xoy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线(1) 试写出直线的直角坐标方程;(2) 在曲线上求一点P,使点P到直线的距离最大,并求出此最大值。
(本小题满分12分)如下图,给出了一个程序框图,其作用是输入的值,输出相应的的值,(I)请指出该程序框图所使用的逻辑结构;(Ⅱ)若视为自变量,为函数值,试写出函数的解析式;(Ⅲ)若要使输入的的值与输出的的值相等,求输入的值的集合
(本小题满分12分)某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米),并把这些高度列成了如下的频数分布表:(1)在这批树苗中,其高度在85厘米以上的树苗大约有多少棵?(2)这批树苗的平均高度大约是多少?;(3)为了进一步获得研究资料,若从组中移出一棵树苗,从组中移出两棵树苗进行试验研究,则组中的树苗A和组中的树苗C同时被移出的概率是多少?
(本小题满分12分)已知实数,设P:函数在R上单调递减,Q:关于的一元二次方程有两个不相等的实数根, 如果命题“”为真命题,命题“”为假命题,求实数的取值范围.
设函数(1)若上的最大值(2)若在区间[1,2]上为减函数,求a的取值范围。(3)若直线为函数的图象的一条切线,求a的值。
设直线与抛物线交于不同两点A、B,F为抛物线的焦点。(1)求的重心G的轨迹方程;(2)如果的外接圆的方程。