(本小题满分12分)某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米),并把这些高度列成了如下的频数分布表:(1)在这批树苗中,其高度在85厘米以上的树苗大约有多少棵?(2)这批树苗的平均高度大约是多少?;(3)为了进一步获得研究资料,若从组中移出一棵树苗,从组中移出两棵树苗进行试验研究,则组中的树苗A和组中的树苗C同时被移出的概率是多少?
在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且. (1)求证:EF∥平面BDC1; (2)求证:平面.
在△ABC中,内角A,B,C的对边分别为a,b,c,若. (1)求证:; (2)若,且,求的值.
已知定点F(0,1)和直线:y=-1,过定点F与直线相切的动圆圆心为点C. (1)求动点C的轨迹方程; (2)过点F的直线交动点C的轨迹于两点P、Q,交直线于点R,求·的最小值; (3)过点F且与垂直的直线交动点C的轨迹于两点R、T,问四边形PRQT的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
已知是定义在上的奇函数,且,若,有恒成立. (1)判断在上是增函数还是减函数,并证明你的结论; (2)若对所有恒成立,求实数的取值范围.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。己知销售价格为5元/千克时,每日可售出该商品11千克. (1)求的值; (2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.