在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),l与C分别交于M,N.(1)写出C的平面直角坐标系方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.
已知向量,,且的最小正周期为(Ⅰ)求的值;(Ⅱ)若,解方程;(Ⅲ)在中,,,且为锐角,求实数的取值范围.
已知圆,直线经过点,(Ⅰ)求以线段CD为直径的圆E的方程;(Ⅱ)若直线与圆C相交于,两点,且为等腰直角三角形,求直线的方程.
设△ABC的内角所对的边分别为,已知,,(Ⅰ)求△ABC的周长;(Ⅱ)求的值.
如图,已知椭圆,是长轴的左、右端点,动点满足,联结,交椭圆于点. (1)当,时,设,求的值;(2)若为常数,探究满足的条件?并说明理由;(3)直接写出为常数的一个不同于(2)结论类型的几何条件.
定义:设分别为曲线和上的点,把两点距离的最小值称为曲线到的距离.(1)求曲线到直线的距离;(2)若曲线到直线的距离为,求实数的值;(3)求圆到曲线的距离.