(本小题满分12分)已知实数,设P:函数在R上单调递减,Q:关于的一元二次方程有两个不相等的实数根, 如果命题“”为真命题,命题“”为假命题,求实数的取值范围.
已知双曲线的一个焦点为(-1,-1),相应准线是x+y-1=0,且双曲线过点(-,0).求双曲线的方程.
给定整数,证明:存在n个互不相同的正整数组成的集合S,使得对S的任意两个不同的非空子集A,B,数与 是互素的合数.(这里与分别表示有限数集的所有元素之和及元素个数.)
凸边形中的每条边和每条对角线都被染为n种颜色中的一种颜色.问:对怎样的n,存在一种染色方式,使得对于这n种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形的顶点,且它的3条边分别被染为这3种颜色?
给定整数,实数满足.求的最小值.
设m,n是给定的整数,,是一个正2n+1边形,.求顶点属于P且恰有两个内角是锐角的凸m边形的个数.