如图,在△ABD和△ACE中,有下列四个等式:①AB="AC" ②AD="AE" ③∠1=∠2 ④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程)
如图,在平面直角坐标系中,抛物线 y = - x 2 + bx + c 与 x 轴交于点 A , B ,与 y 轴交于点 C .且直线 y = x - 6 过点 B ,与 y 轴交于点 D ,点 C 与点 D 关于 x 轴对称,点 P 是线段 OB 上一动点,过点 P 作 x 轴的垂线交抛物线于点 M ,交直线 BD 于点 N .
(1)求抛物线的函数解析式;
(2)当 ΔMDB 的面积最大时,求点 P 的坐标;
(3)在(2)的条件下,在 y 轴上是否存在点 Q ,使得以 Q , M , N 三点为顶点的三角形是直角三角形?若存在,直接写出点 Q 的坐标;若不存在,说明理由.
中心为 O 的正六边形 ABCDEF 的半径为 6 cm ,点 P , Q 同时分别从 A , D 两点出发,以 1 cm / s 的速度沿 AF , DC 向终点 F , C 运动,连接 PB , PE , QB , QE ,设运动时间为 t ( s ) .
(1)求证:四边形 PBQE 为平行四边形;
(2)求矩形 PBQE 的面积与正六边形 ABCDEF 的面积之比.
某服装专卖店计划购进 A , B 两种型号的精品服装.已知2件 A 型服装和3件 B 型服装共需4600元;1件 A 型服装和2件 B 型服装共需2800元.
(1)求 A , B 型服装的单价;
(2)专卖店要购进 A , B 两种型号服装60件,其中 A 型件数不少于 B 型件数的2倍,如果 B 型打七五折,那么该专卖店至少需要准备多少货款?
某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,共调查了多少名学生;
(2)补全条形统计图;
(3)若该校爱好运动的学生共有800名,则该校学生总数大约有多少名.
如图, ⊙ O 的直径 AB 交弦(不是直径) CD 于点 P ,且 P C 2 = PB · PA ,求证: AB ⊥ CD .