期中备考总动员高三数学模拟卷【江苏】5
设向量,,则“”是“”成立的 条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) .
设为互不重合的平面,是互不重合的直线,给出下列四个命题:
①若,则;
②若,则;
③若,,则;
④若,则;
其中正确命题的序号为 .
(本小题满分14分)如图,在三棱锥中,已知是正三角形,平面,,为的中点,在棱上,且.
(1)求三棱锥的体积;
(2)求证:平面;
(3)若为中点,在棱上,且,求证:平面.
如图,某商业中心O有通往正东方向和北偏东30º方向的两条街道,某公园P位于商业中心北偏东角(),且与商业中心O的距离为公里处,现要经过公园P修一条直路分别与两条街道交汇于A,B两处。
(1)当AB沿正北方向时,试求商业中心到A,B两处的距离和;
(2)若要使商业中心O到A,B两处的距离和最短,请确定A,B的最佳位置。
【原创】在平面直角坐标系中,椭圆的左顶点为左焦点为右焦点为.
(1)若椭圆上存在点,使得,求椭圆离心率的取值范围;
(2)若点满足,求证:以为圆心,以为半径的圆与椭圆右准线相切.
(本小题满分16分)已知函数,实数满足,设.
(1)当函数的定义域为时,求的值域;
(2)求函数关系式,并求函数的定义域;
(3)求的取值范围.
设数列是各项均为正数的等比数列,其前项和为,若,.
(1)求数列的通项公式;
(2)对于正整数(),求证:“且”是“这三项经适当排序后能构成等差数列”成立的充要条件;
(3)设数列满足:对任意的正整数,都有
,且集合中有且仅有3个元素,试求的取值范围.
【原创】选修4-1:几何证明选讲(本小题满分10分)
如图,,是圆的两条弦,它们相交于的中点,若,,,求圆的半径.
【原创】选修4—4:坐标系与参数方程
在直角坐标系中,参数方程为的直线,与以原点为极点,轴的正半轴为极轴,极坐标方程为的曲线相交于弦,若点,求的值.
(本小题满分10分)某校开设8门校本课程,其中4门课程为人文科学,4门为自然科学,学校要求学生在高中三年内从中选修3门课程,假设学生选修每门课程的机会均等.
(1)求某同学至少选修1门自然科学课程的概率;
(2)已知某同学所选修的3门课程中有1门人文科学,2门自然科学,若该同学通过人文科学课程的概率都是,自然科学课程的概率都是,且各门课程通过与否相互独立.用表示该同学所选的3门课程通过的门数,求随机变量的概率分布列和数学期望。