设数列是各项均为正数的等比数列,其前项和为,若,.(1)求数列的通项公式;(2)对于正整数(),求证:“且”是“这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列满足:对任意的正整数,都有,且集合中有且仅有3个元素,试求的取值范围.
(本小题满分7分)选修4-4:坐标系与参数方程 直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程,曲线C的参数方程为为参数),求曲线C截直线l所得的弦长
(本小题满分7分)选修4-2:矩阵与变换 设是把坐标平面上的点的横坐标伸长到倍,纵坐标伸长到倍的伸压变换. (Ⅰ)求矩阵的特征值及相应的特征向量; (Ⅱ)求逆矩阵以及椭圆在的作用下的新曲线的方程.
(本小题满分14分) 已知函数 (1)求f(x)在[0,1]上的极值; (2)若对任意成立,求实数a的取值范围; (3)若关于x的方程在[0,2]上恰有两个不同的实根,求实数b的取值范围.
(本小题满分13分) 过椭圆内一点M(1,1)的弦AB (1)若点M恰为弦AB的中点,求直线AB的方程; (2)求过点M的弦的中点的轨迹方程。
(本小题满分13分) 数列(I)求数列的通项公式; (II)若的最大值。