已知AB为⊙O的直径AC、AD为⊙O的弦,若AB=2AC=
AD,则∠DBC的度数为
如图,正方形
的边长为2,以
为圆心、
为半径作弧
交
于点
,设弧
与边
、
围成的阴影部分面积为
;然后以
为对角线作正方形
,又以
为圆心、
为半径作弧
交
于点
,设弧
与边
、
围成的阴影部分面积为
;…,按此规律继续作下去,设弧
与边
、
围成的阴影部分面积为
.则:(1)
=;(2)
=.
把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O经过的总路程为,经过61次旋转后,顶点O经过的总路程为.
如图,△ABC中,
,
,
,D是线段BC上的一个动点(包括点B,C),以AD为直径画⊙O分别交AB,AC于点E,F,连接EF,则过点E,D,F三点的弓形的面积S的取值范围是__________.
如图,在平面直角坐标系中,⊙O的半径为2,AC、BD是⊙O的两条相互垂直的弦,垂足为M(1,
),则四边形ABCD的面积的最大值与最小值的差为______. 
如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为
.(结果保留π)
如图,在矩形ABCD中,AB=2,BC=4,⊙D的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O重合,绕着O点转动三角板,使它的一条直角边与⊙D切于点H,此时两直角边与AD交于E,F两点,则EH的值为 .
如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作:
(1)利用网格确定该圆弧所在圆的圆心D点的位置,并写出点D坐标为 ;
(2)连接AD、CD,则⊙D的半径为 (结果保留根号),∠ADC的度数为 ;
(3)若扇形DAC是一个圆锥的侧面展开图,则该圆锥底面半径为 .(结果保留根号).
已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种): 或者 .
(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.
如图,抛物线y=
x2通过平移得到抛物线m,抛物线m经过点B(6,0)和O(0,0),它的顶点为A,以O为圆心,OA为半径作圆,在第四象限内与抛物线y=
x2交于点C,连接AC,则图中阴影部分的面积为 