如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.
(1)求⊙O的半径;
(2)求证:CE=BE.
如图,从一个半径为1的圆形铁皮中剪下一个圆心角为90°的扇形BAC.
(1)求这个扇形的面积;
(2)若将扇形BAC围成一个圆锥的侧面,这个圆锥的底面直径是多少?能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.
已知:如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
求证:(1)BC平分∠PBD;
(2)BC2=AB•BD.
如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB//CD,OB=6cm,OC=8cm,
求:(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径。
如图,已知在△ABC中,∠A=90°
(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).
(2)若∠B=60°,AB=3,求⊙P的面积.
以O为圆心的两个同心圆中,AD是大圆的直径,大圆的弦AB与小圆相切于点C,过C
点作FH⊥AD交大圆于F、H,垂足为E.
(1)判断AC与BC的大小关系,并说明理由.
(2)如果FC、CH的长是方程x2-2x+4=0的两根(CH>CF),求CE、CA的长以及图中阴影部分的面积.
如图四边形ABCD内接于⊙O ,BD是⊙O 的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O 的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
如图所示,是⊙O的一条弦,,垂足为,交⊙O于点,点在⊙O
上.
(1)若,求的度数;
(2)若,,求的长.
如图,AB是⊙O的直径,BC切⊙O于B,弦AD∥OC,OC交⊙O于E.
(1)求证:CD是⊙O的切线;
(2)若BC=4,CE=2,求AB和AD的长.
如图,已知等边,以边BC为直径的半圆与边AB,AC分别交于点D、E,过点D作DF⊥AC于点F,
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC于点H,若等边的边长为8,求AF,FH的长。
如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标;
(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长.
已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E,连接OC,OC=5.
(1)若CD=8,求BE的长;
(2)若∠AOC=150°,求扇形OAC的面积
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.
(1)求证:AC是⊙O的切线;
(2)若DE=2,BD=4,求AE的长.
如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60º得PC.
(1)当点P运动到线段OA的中点时, 点C的坐标为 ;
(2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标;
(3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.