如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)若DE=2,BD=4,求AE的长.
解不等式组,并把它的解集在数轴上表示出来.
如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、 B(0,1)、C(d,2)。 (1)求d的值; (2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图 像上。请求出这个反比例函数和此时的直线B′C′的解析式; (3)在(2)的条件下,直线B′C′交y轴于点G。问是否存在x轴上的点M和反比例函数图像上的点P, 使得四边形PGMC′是平行四边形。如果存在,请求出点M和点P的坐标;如果不存在,请说明理由。
如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足 为D。 (1)求证:∠EAC=∠CAB; (2)若CD=4,AD=8: ①求O的半径; ②求tan∠BAE的值。
大润发超市进了一批成本为8元/个的文具盒。调查发现:这种文具盒每个星期 的销售量y(个)与它的定价x(元/个)的关系如图所示: (1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变 量x的取值范围); (2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高? 最高利润是多少?
某班有学生55人,其中男生与女生的人数之比为6:5。 (1)求出该班男生与女生的人数; (2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人 数2人以上。请问男、女生人数有几种选择方案?