A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度
(本题满分6分)如图,在△ABC中,∠ACB=90°,D是BC中点,DE⊥BC,CE∥AD,若AC=2,CE=4.求四边形ACEB的周长.
已知抛物线y=-x2+bx+c,它与x轴的两个交点分别为(-1,0),(3,0),求此抛物线的解析式.
解关于x的方程:+5x(x-3)=0.
(本题10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB为直径的OM交OC于点D、E,连结AD、BD.现以O为坐标原点,OA、OC所在直线为x轴、y轴建立如图所示直角坐标系,若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.(1)写出顶点B的坐标 ▲ (用a的代数式表示);(2)求抛物线的解析式:(3)在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标:若不存在,说明理由.
(本题8分)如图,AB是⊙O的直径,BC是弦,∠ABC的平分线BD交⊙O于点D,DE⊥BC,交BC的延长线于点E,RD交AC于点F.(1)求证:DE是⊙O的切线;(2)若CE=2,ED=4,求⊙O的半径.