初中数学

如图,已知L1⊥L2,⊙O与L1,L2都相切,⊙O的半径为1cm,矩形ABCD的边AD、AB分别与直线L1,L2重合,∠BCA=600,若⊙O与矩形ABCD沿L1同时向右移动,⊙O的移动速度为2cm,矩形ABCD的移动速度为3cm/s,设移动时间为t(s).
(1)如图①,连接OA、AC,则∠OAC的度数为      °;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,求当对角线AC所在直线与圆O第二次相切时t的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为上一点,CE⊥AD于E,求证:AE=BD+DE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0≤t≤2),连接PQ,以PQ为直径作⊙O.

(1)当t=0.5时,求△BPQ的面积;
(2)设⊙O的面积为y,求y与t的函数解析式,并直接写出y的值最小时t的值;
(3)若⊙O与Rt△ABC的一条边相切,求t的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小刚用一张半径为12cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为5cm,那么这张扇形纸板的面积是
cm2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.

(1)求证:CD∥BF;
(2)若⊙O的半径为5,cos∠BCD=,求线段AD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.

(1)求AD的长;
(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;
(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于点D ,DE⊥OC于E。

(1)求证:AD=DC;
(2)求证:DE是⊙O1的切线;
(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.

(1)求证:∠E=∠C;
(2)当⊙O的半径为3,tanC=时,求BE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,交AC边于点G,过D作⊙O的切线EF,交AB的延长线于点F,交AC于点E.

(1)求证:BD=CD;
(2)若AE=6,BF=4,求⊙O的半径;
(3)在(2)条件下判断△ABC的形状,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.

(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;
(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否成立?请说明理由;
(3)当点M在⊙O外部,如图三,∠AMO=30°,求图中阴影部分的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.

(1)求证:CF与⊙O相切;
(2)若AD=2,F为AE的中点,求AB的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.

(1)求证:PB是的切线.
(2)若PB=6,DB=8,求⊙O的半径.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.

(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE,过B作BF∥CD,交AC的延长线于点F,求证:BF是⊙O的切线.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE∶CD=5∶24

(1)求CD的长;
(2)现汛期来临,水面要以每小时4 m的速度上升,则经过多长时间桥洞会刚刚被灌满?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆幂定理解答题