如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=30°,求图中阴影部分的面积.
找出下列图形中的全等图形.
找出下列图中的全等图形.
认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在中,是与的平分线和的交点,通过分析发现,理由如下:∵和分别是和的角平分线(1)探究2:如图2中, 是与外角的平分线和的交点,试分析与有怎样的关系?请说明理由.(2)探究3: 如图3中,是外角与外角的平分线和的交点,则与有怎样的关系?(直接写出结论)(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)
工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟;(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品件(为正整数).①用含的代数式表示小王四月份生产乙种产品的件数;②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求的取值范围.
我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”,乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.(1)这个游戏公平吗?如果不公平,这是一个偏向谁的游戏?(2)在此游戏中,要想抢到20,应抢到哪些数?