初中数学

如图所示,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.

(1)如果⊙O的半径为4,CD=,求∠BAC的度数;
(2)若点E为的中点,连接OE,CE.求证:CE平分∠OCD;
(3)在(1)的条件下,圆周上到直线AC距离为3的点有多少个?并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.

求证:(1)、D是BC的中点;(2)、△BEC∽△ADC;(3)、若,求⊙O的半径。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小刚用一张半径为12cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为5cm,那么这张扇形纸板的面积是
cm2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在边长为1的小正方形组成的方格纸上,将绕着点顺时针旋转

(1)画出旋转后的
(2)求线段在旋转过程中所扫过的扇形面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.

(1)求证:AC·AD=AB·AE;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知⊙O上A、B、C三点,∠BAC=30°,D是OB延长线上的点,∠BDC=30°,⊙O半径为

(1)求证:DC是⊙O的切线;
(2)如果AC∥BD,证明四边形ACDB是平行四边形,并求其周长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.

(1)求AD的长;
(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;
(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D.

求证:(1)△CDE是等腰三角形;
(2)△BEC∽△ADC;
(3).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE=弧 AB,BE分别交AD、AC于点F、G.

(1)判断△FAG的形状,并说明理由;
(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知⊙O的弦CD垂直于直径AB,点E在CD上,且EC=EB.

(1)求证:△CEB∽△CBD;
(2)若CE=3,CB=5,求DE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)判断直线CD和⊙O的位置关系,并说明理由.
(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A.与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.

(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC,AD,BC之间的数量关系,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

七年级我们学过三角形的相关知识,在动手实践的过程中,发现了一个基本事实:
三角形的三条高(或三条高所在直线)相交于一点.
其实,有很多八年级、九年级的问题均可用此结论解决.
【运用】如图,已知:△ABC的高AD与高BE相交于点F,且∠ABC=45°,过点F作FG∥BC交AB于点G,求证:FG+CD=BD.

小方同学在解答此题时,利用了上述结论,她的方法如下:
连接CF并延长,交AB于点M,
∵△ABC的高AD与高BE相交于点F,
∴CM为△ABC的高.
(请你在下面的空白处完成小方的证明过程.)
【操作】如图AB是圆的直径,点C在圆内,请仅用无刻度的直尺画出△ABC中AB边上的高.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知L1⊥L2,⊙O与L1,L2都相切,⊙O的半径为1cm,矩形ABCD的边AD、AB分别与直线L1,L2重合,∠BCA=600,若⊙O与矩形ABCD沿L1同时向右移动,⊙O的移动速度为2cm,矩形ABCD的移动速度为3cm/s,设移动时间为t(s).
(1)如图①,连接OA、AC,则∠OAC的度数为      °;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,求当对角线AC所在直线与圆O第二次相切时t的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于点P,Q是AC的中点,连接QP并延长交CB的延长线于点D.

(1)判断直线PQ与⊙O的位置关系,并说明理由:
(2)若AP=4,tanA=
①求⊙O的半径的长;
②求PD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆幂定理解答题