如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE=弧 AB,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.
如图,在△ABC中,∠C=90°. (1)用尺规作图法作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连结BD,若BD平分∠CBA,求∠A的度数.
先化简,再求值:,其中.
解一元一次不等式组:,并写出所有的整数解.
已知:二次函数与轴交于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程的两个根. (1)请直接写出点A、B的坐标,并求出该二次函数的解析式。 (2)如图1,在二次函数对称轴上是否存在点P,使的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由. (3)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合). 过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当面积S最大时,求m的值.
如图所示,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF,BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径