如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=5,AD=4,则AE的长为 .
李老师自制圆锥教具,已经用一个圆心角为90º、半径为4分米的扇形围成了圆锥的侧面,还需用一个半径为 分米的圆来做这个圆锥的底面圆.
已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满足条件的⊙C有( )
A.2个 | B.4个 | C.5个 | D.6个 |
如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为( )
A. B. C. D.
如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )
A.2cm | B.4cm | C.6cm | D.8cm |
如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB, ∠AOC=84°,则∠E等于( )
A.42 ° | B.28° | C.21° | D.20° |
如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为( )
A.140° | B.125° | C.130° | D.110° |
如图,已知L1⊥L2,⊙O与L1,L2都相切,⊙O的半径为1cm,矩形ABCD的边AD、AB分别与直线L1,L2重合,∠BCA=600,若⊙O与矩形ABCD沿L1同时向右移动,⊙O的移动速度为2cm,矩形ABCD的移动速度为3cm/s,设移动时间为t(s).
(1)如图①,连接OA、AC,则∠OAC的度数为 °;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,求当对角线AC所在直线与圆O第二次相切时t的值.
已知⊙O的半径是6cm,点O到同一平面内直线L的距离为5cm,则直线L与⊙O的位置关系是( )
A.相交 | B.相切 | C.相离 | D.无法判断 |
若⊙P的半径为13,圆心P的坐标为(5,12 ),则平面直角坐标系的原点O与⊙P的位置关系是( )
A.在⊙P内 | B.在⊙P上 |
C.在⊙P外 | D.无法确定 |
某同学用一扇形纸片为玩偶制作了一个圆锥形帽子(不考虑接缝),已知扇形的半径为13cm,扇形的弧长为10π cm,那么这个圆锥形帽子的高是( )
A.5cm | B.12cm | C.13cm | D.14cm |
如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于( )
A.40° B.50° C.60° D.70°