初中数学

如图所示,已知AC∥BD,EA,EB分别平分∠CAB和∠DBA,CD过E点.求证:AB=AC+BD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知△中,(如图),点两边的距离相等,且
(1)先用尺规作出符合要求的点(保留作图痕迹,不需要写作法),然后判断△的形状,并说明理由;
(2)设,试用的代数式表示的周长和面积;
(3)设交于点,试探索当边的长度变化时,的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.
(2)如图2,在△ABC中,∠ABC的平分线BF与∠A CB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系 ?并证明这种关系.
(3)如图3,在△ ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC和△DEF中,AC∥DE,∠EFD与∠B互补,DE=mAC(m>1).试探索线
段EF与AB的数量关系,并证明你的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.

(1)求MP的值;
(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?
(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线轴负半轴、轴正半轴分别交于A、B两点,正比例函数的图像与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM =10,BN =3,
(1)求A、B两点的坐标;(用b表示)
(2)图中有全等的三角形吗?若有,请找出并说明理由。
(3)求MN的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图1,△ABC中,AB=13,BC=14,AC=15.将线段AB沿过点A的直线翻折,使得点B的对应点E恰好落在BC边上,折痕与BC边相交于点D,如图2所示.

(1) 求线段DE的长;
(2) 在图2中,若点P为线段AC上一点,且△AEP为等腰三角形,求AP的长.
小李在解决第(2)小题时的过程如下:
① 当EA=EP时,显然不存在;当AE=AP时,则AP=__________;(需填空)
② 对于“当PA=PE时的情形”,小李在解决时遇到了困难.小明老师对小李说:对于这个“直线形”图形直接解决困难时,我们可以建立平面直角坐标系,用一次函数的知识解决.如以点D为坐标原点,BC所在直线为x轴,然后求出AE中垂线的直线解析式,然后求出点P的坐标,最后用勾股定理求出AP的长……
请根据小明老师的提示完成第(2)题中②的求解,你也可以用自己的方法求出AP的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AD⊥BC,垂足为D.CD=1,AD=2,BD=4.

(1)求∠BAC的度数?并说明理由;
(2)P是边BC上一点,连结AP,当△ACP为等腰三角形时,求CP的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点A是5×5网格图形中的一个格点,图中每个小正方形的边长为1,请在网格中按下列要求操作:

(1)以点A为其中的一个顶点,在图(1)中画一个面积等于3的格点直角三角形;
(2)以点A为其中的一个顶点,在图(2)中画一个面积等于的格点等腰直角三角形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠BAC=90°,AB=6cm,BC=10cm,点D在线段AC上,且CD=2cm,动点P从BA的延长线上距A点10cm的E点出发,以每秒2cm的速度沿射线EA的方向运动了秒。

(1)求AD的长;
(2)直接写出用含有的代数式表示PE=_________;
(3)在运动过程中,是否存在某个时刻,使△ABC与△ADP全等?若存在,请求出值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若一个三角形的三个顶点均在一个图形的不同的边上,则称此三角形为该图形的内接三角形.

(1)在图①中画出△ABC的一个内接直角三角形;
(2)如图②,已知△ABC中,∠BAC=60°,∠B=45°,AB=8,AD为BC边上的高,探究以D为一个顶点作△ABC的内接三角形,其周长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;
(3)如图③,△ABC为等腰直角三角形,∠C=90°,AC=6,试探究:△ABC的内接等腰直角三角形的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm。

(1)若P、Q是△ABC边上的两个动点,其中点P从A沿A→B方向运动,速度为每秒1cm,点Q从B沿B→C方向运动,速度为每秒2cm,两点同时出发,设出发时间为t秒.①当t=1秒时,求PQ的长;②从出发几秒钟后,△PQB是等腰三角形?
(2)若M在△ABC边上沿B→A→C方向以每秒3cm的速度运动,则当点M在边CA上运动时,求△BCM成为等腰三角形时M运动的时间.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求∠A的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知AB是⊙O的直径,AB=8, 点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.

(1)若,求∠F的度数;
(2)设写出之间的函数解析式,并写出自变量取值范围;
(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在△ABC中,AB=AC,∠BAC=),将线段BC绕点B逆时针旋转60°得到线段BD。

(1)如图1,直接写出∠ABD的大小(用含的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连结DE,若∠DEC=45°,求的值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学三角形的五心解答题