初中数学

某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:

家电名称
空调
彩电
冰箱
工 时


1
2



1
3



1
4

产值(千元)
4
3
2

 
问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.

(1)图中线段AB所表示的实际意义是     
(2)请直接写出y与x之间的函数关系式;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.

(1)当4≤x≤12时,求y关于x的函数解析式;
(2)直接写出每分进水,出水各多少升.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.

(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系式?
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

利用图象解方程组

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形ABCD、正方形A1B1C1D1和正方形A2B2C2D2均位于平面直角坐标系的第一象限内,它们的边平行于x轴或y轴,其中点A,A1,A2在直线OM上,点C,C1,C2在直线ON上,O为坐标原点,已知点A的坐标为(3,3),正方形ABCD的边长为1.

(1)求直线ON的函数解析式;
(2)若点C1的横坐标为4,求正方形A1B1C1D1的边长;
(3)若正方形A2B2C2D2的边长为m,则点B2的坐标为                 .(用含字母m的代数式表示.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一次函数图象经过(3,8)和(5,12)两点,求一次函数解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线,的图像经过BC上的点D与AB交于点E,连接DE,若若E是AB的中点﹒

(1)求D点的坐标;
(2)点F是OC边上一点,若△FBC和△DEB相似,求BF的解析式;
(3)若点P(m,3m+6)也在此反比例函数的图像上(其中m >0),过p点作x轴的垂线,交x轴于点M,若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求购买每个笔记本和钢笔分别为多少元?
(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;
(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小锋家有一块四边形形状的空地(如图,四边形ABCD),其中AD∥BC,BC=1.6m,AD=5.5m,CD=5.2m,∠C=90°,∠A=53°.小锋的爸爸想买一辆长4.9m,宽1.9m的汽车停放在这块空地上,让小锋算算是否可行.
小锋设计了两种方案,如图1和图2所示.

(1)请你通过计算说明小锋的两种设计方案是否合理;
(2)请你利用图3再设计一种有别于小锋的可行性方案,并说明理由.
(参考数据:sin53°=0.8,cos53°=0.6,tan53°=

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线l:  交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.

(1)点A坐标是__________,点B的坐标__________,BC=__________
(2)当点P在什么位置时,△APQ≌△CBP,说明理由.
(3)当△PQB为等腰三角形时,求点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.

(1)点A坐标是      ,点B的坐标      ,BC=     
(2)当点P在什么位置时,△APQ≌△CBP,说明理由.
(3)当△PQB为等腰三角形时,求点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数的图象过点(3,5)与(﹣4,﹣9),且该图象与x轴、y轴分别交于点A、点B,点O为坐标原点,
(1)求这个一次函数的解析式;
(2)求△OAB的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知y与x+2成正比例,且当x=1时,y=﹣6.
(1)求y与x的函数关系式.
(2)若点(a,2)在此函数图象上,求a的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,已知一次函数y=-x+6分别与x、y轴交于A、B两点,过点B的直线BC交x轴负半轴与点C,且OC=OB.

(1)求直线BC的函数表达式;
(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;
(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题