如图,正方形ABCD、正方形A1B1C1D1和正方形A2B2C2D2均位于平面直角坐标系的第一象限内,它们的边平行于x轴或y轴,其中点A,A1,A2在直线OM上,点C,C1,C2在直线ON上,O为坐标原点,已知点A的坐标为(3,3),正方形ABCD的边长为1. (1)求直线ON的函数解析式; (2)若点C1的横坐标为4,求正方形A1B1C1D1的边长; (3)若正方形A2B2C2D2的边长为m,则点B2的坐标为 .(用含字母m的代数式表示.
现有两块大小相同的直角三角板△ABC、△DEF,∠ACB=∠DFE=90°, ∠A=∠D=30°. (1)将这两块三角板摆成如图①的形式,使B、F、E、A在同一条直线上,点C在边DF上,DE与AC相交于点G,试求∠AGD的度数; (2)将图①中的△ABC固定,把△DEF绕着点F逆时针旋转成如图②的形式,当旋转的角度等于多少度时,DF∥AC? 并说明理由.
如图,在△ABC中,BF是高,点E、D分别在BC、AC上,且ED⊥AC,∠1=∠2,试判断GF与BC的位置关系,并说明理由.
解方程组(每题4分,共8分)(1) (2)
先化简,再求值:,y=
把下列各式分解因式(每题4分,共12分)(1) (2) (3)