初中数学

煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨煤炭要全部运往A.B两厂,通过了解获得A.B两厂的有关信息如下表(表中运费栏“元/t•km”表示:每吨煤炭运送一千米所需的费用):

厂别
运费(元/t•km)
路程(km)
需求量(t)
A
0.45
200
不超过600
B
a(a为常数)
150
不超过800

(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费(可用含a的代数式表示)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的距离为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.
(1)甲走完全程所用的时间为          小时;
(2)乙行走的速度为            
(3)当乙行走了多少时间,他们两人在途中相遇?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为了发展旅游经济,我市某风景区对门票采用灵活的售票方法吸引游客,门票的定价为每人50元,,非节日打a折售票,节假日按团队人数分段定价售票,即m人一下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人的部分的游客打b折售票,设某旅游团人数为x人,非节假日购票款为y(元),节假日购票款为y(元)。y 、y与x之间的函数图像如图所示

(1)观察图像可知a=  ,b=   ,m=   
(2)直接写出y, y与x之间的函数解析式
(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团到该景区旅游,共付门票款1900元,A、B两个团队合计50人,求A、B两个团队各有多少人?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.
(1)①直接写出点E的坐标:  
②求证:AG=CH.
(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.
(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,一次函数的图像与反比例函数的图像交于两点,与轴交于点,与轴交于点,已知,点的坐标为,过点轴,垂足为
(1)求反比例函数和一次函数的解析式;
(2)求的面积。
(3)根据图像回答:当x 为何值时,一次函数的函数值大于
反比例函数的函数值?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本
和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.
(1)请写出y关于x的关系式;
(2)如果该厂每天至少投入成本30000元,那么每天至少获利多少元?
(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?

 
A
B
成本(元)
50
35
利润(元)
20
15

 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,在等腰梯形ABCO中,ABCOEAO的中点,过点EEFOCBCFAO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OCx轴正半轴上,点AB在第一象限内.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点PPMEFOC于点M,过MMNAO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为EDGH′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形EDGH′重合部分的面积y与时间t的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线、线段分别表示甲、乙两车所行路程(千米)与时间(小时)之间的函数关系对应的图象(线段表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:

(1)求乙车所行路程与时间的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,甲、乙两车相距80千米?(写出解题过程)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如下图:

李明从家出发到出现故障时的速度为         米/分钟;
李明修车用时           分钟;
求线段BC所对应的函数关系式(不要求写出自变量的取值范围).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.
请你解答下列问题:
将m看作已知量,分别写出当0<x<m和x>m时,之间的函数关系式;
按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.

月份
用水量(吨)
水费(元)
四月
35
59.5
五月
80
151

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,已知点,点正半轴上,且.动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒.点M、N在轴上,且是等边三角形.
求点B的坐标
求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值;
如果取的中点,以为边在内部作如图2所示的矩形,点在线段上.设等边和矩形重叠部分的面积为,请求出当秒时,与的函数关系式,并求出的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,某地区对某种药品的需求量(万件),供应量(万件)与价格x(元/件)分别近似满足下列函数关系式:,需求量为0时,即停止供应;当时,该药品的价格称为稳定价格,需求量称为稳定需求量.
求该药品的稳定价格与稳定需求量.
价格在什么范围内,该药品的需求量低于供应量?
由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线分别交轴、轴于两点.点,以为一边在轴上方作矩形,且.设矩形重叠部分的面积为
求点的坐标;
值由小到大变化时,求的函数关系式;
若在直线上存在点,使等于,请直接写出的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线经过O(0,0),A(4,0),B(3,)三点,连接AB,过点B作BC∥轴交该抛物线于点C.

求这条抛物线的函数关系式.
两个动点P、Q分别从O、A同时出发,以每秒1个单位长度的速度运动. 其中,点P沿着线段0A向A点运动,点Q沿着线段AB向B点运动. 设这两个动点运动的时间为(秒) (0<≤2),△PQA的面积记为S.
① 求S与的函数关系式;
② 当为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;
是否存在这样的值,使得△PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知


Ⅱ.已知l1:直线y=-x+3和l2:直线y=2x,l1与x轴交点为A.求:
(1)l1与l2的交点坐标.
(2)经过点A且平行于l2的直线的解析式

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题