初中数学

如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.

(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);
(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在直角坐标系xOy中,一次函数(m为常数)的图像与x轴交于A(-3,0),与y轴交于点C;以直线为对称轴的抛物线(a,b,c为常数,且a>0)经过A,C两点,与x轴正半轴交于点B.

(1)求一次函数及抛物线的函数表达式。
(2)在对称轴上是否存在一点P,使得PBC的周长最小,若存在,请求出点P的坐标.
(3)点D是线段OC上的一个动点(不与点O、点C重合),过点D作DE‖PC交x轴于点E,连接PD、PE。设CD的长为m, PDE的面积为S。求S与m之间的函数关系式。并说明S是否存在最大值,若存在,请求出最大值:若不存在,请说明理由。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两辆摩托车同时从相距20km的A、B两地出发,相向而行,图中分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系,则下列说法错误的是(   ).

A.乙摩托车的速度较快
B.经过0.3小时甲摩托车行驶到A、B两地的中点
C.经过0.25小时两摩托车相遇
D.当乙摩托车到达A地时,甲摩托车距离A地km.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2),过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N。

(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某冰箱厂为响应国家“家电下乡”号召,计划生产两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:

型号
A型
B型
成本(元/台)
2200
2600
售价(元/台)
2800
3000

⑴冰箱厂有哪几种生产方案?
⑵该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受售价13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?
⑶若按⑵中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图,点B在y轴的负半轴上,点A在x轴的正半轴上,且OA=2,∠OAB=2。

(1)求点B的坐标;
(2)求直线AB的解析式;
(3)若点C的坐标为(-2,0),在直线AB上是否存在一点P,使ΔAPC与ΔAOB相似,若存在,求出点P的坐标;若不存在,请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线轴交于点, 与轴交于点, 且.点从点出发沿以每秒1个单位长的速度向点匀速运动,到达点后立刻以原来的速度沿返回;点从点出发沿以每秒1个单位长的速度向点匀速运动.伴随着的运动,保持垂直平分,且交于点,交折线于点.点同时出发,当点到达点时停止运动,点也随之停止.设点运动的时间是秒().
(1)求直线的解析式;
(2)在点运动的过程中,求的面积之间的函数关系式;
(3)在点运动的过程中,完成下面问题:
①四边形能否成为直角梯形?若能,请求出的值;若不能,请说明理由;
②当经过点时,请你直接写出的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值计算题