保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).
⑴分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.
⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?
⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?
我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.
售价x(元) |
… |
70 |
90 |
… |
销售量y(件) |
… |
3000 |
1000 |
… |
(利润=(售价-成本价)×销售量)
(1)求销售量y(件)与售价x(元)之间的函数关系式;
(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?
红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11.经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.
(1)求y2与x的函数关系式;
(2)当销售价格为多少时,产量等于市场需求量?
(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克) (2≤x≤10)之间的函数关系式.
我国青海省玉树地区发生强烈地震以后,国家立即启动救灾预案,积极展开灾区运送救灾物资和对伤员的救治工作.已知西宁机场和玉树机场相距800千米,
乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段AB、CD分别表示甲、乙
两机离玉树机场的距离S(百千米)和所用去的时间t(小时)之间的函数关系的图象(注:
为了方便计算,将平面直角坐标系中距离S的单位定为(百千米)).观察图象回答下列问题:
(1)乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞行速度每小时各为多少千米?
(2)求甲、乙两机各自的S与t的函数关系式;
(3)甲、乙两机相遇时,乙机飞行了几小时?离西宁机场多少千米?
(本小题满分12分)
海安县政府大力扶持大学生开展创业.王强在县政府的扶持下销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.
(1)设王强每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果王强想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果王强想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
宾馆厨房的桌子上整齐叠放着若干只形状一样的碗,它的主视图如下,请你画出它的俯视图。设叠放这种碗只叠放高度为厘米,经实验发现,当叠放这种碗5只时,叠放高度为12厘米;当叠放这种碗8只时,叠放高度为15.6厘米。求(厘米)与(只)之间的函数关系,并指出这种碗的深度是多少?
如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象
相交于A、B两点,点A的坐标为(-6,2),点B的坐标为(3,n).
(1)求反比例函数和一次函数的解析式.
(2)直接写出使反比例函数值大于一次函数值的x的取值范围
(本题10分)
已知一次函数y=的图象与x轴交于点A.与轴交于点;二次函数图象与一次函数y=的图象交于、两点,与轴交于、两点且的坐标为
(1)求二次函数的解析式;
(2)在轴上是否存在点P,使得△是直角三角形?若存在,求出所有的点,若不存在,请说明理由。
如图所示,某地区对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x + 70,y2=2x-38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)求该药品的稳定价格与稳定需求量.
(2)价格在什么范围内,该药品的需求量低于供应量?
(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.
(本题满分12分)已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.
(本题满分10分)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件
(1)假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x间的函数关系式,并注明x的取值范围.
(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)
国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价(万元)之间满足关系式,月产量x(套)与生产总成本(万元)存在如图所示的函数关系.
(1)直接写出与x之间的函数关系式;
(2)求月产量x的范围;
(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?
某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品, 一部份存入仓库,另一部分运往外地销售。根据经验,该农产品在收获过程中两个种植基地累积总产量y (吨)与收获天数x (天)满足函数关系y=2x+3 (1£x£10且x为整数)。该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分比如下表:
项目 |
该基地的累积产量占 两基地累积总产量的百分比 |
该基地累积存入仓库的量占 该基地的累积产量的百分比 |
百分比 |
||
种植基地 |
||
甲 |
60% |
85% |
乙 |
40% |
22.5% |
(1) 请用含y的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量;
(2) 设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;
(3) 在(2)基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获期开始 的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m(吨)与收获天数x(天)满足函数关系m= -x2+13.2x-1.6 (1£x£10且x为整数)。
问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?