(本题10分) 已知一次函数y=的图象与x轴交于点A.与轴交于点;二次函数图象与一次函数y=的图象交于、两点,与轴交于、两点且的坐标为 (1)求二次函数的解析式; (2)在轴上是否存在点P,使得△是直角三角形?若存在,求出所有的点,若不存在,请说明理由。
先化简:(x﹣)÷,其中的x选一个适当的数代入求值.
如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D. (1)求该二次函数的表达式; (2)求证:四边形ACHD是正方形; (3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M的直线交二次函数的图象于另一点N. ①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围; ②若△CMN的面积等于,请求出此时①中S的值.
如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点. (1)求证:△ADP≌△ECP; (2)若BP=n•PK,试求出n的值; (3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.
如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上. (1)求∠BAO与∠ABO的度数(直接写出答案); (2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考数据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)
为了治理大气污染,我国中部某市抽取了该市2014年中120天的空气质量指数,绘制了如下不完整的统计图表: 请根据图表中提供的信息,解答下面的问题: (1)空气质量指数统计表中的a=,m=; (2)请把空气质量指数条形统计图补充完整: (3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是度; (4)估计该市2014年(365天)中空气质量指数大于100的天数约有天.