小聪和小明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O-A-B-C和线段OD分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在图书馆查阅资料的时间为 分钟,小聪返回学校的速度为 千米/分钟.
(2)请你求出小明离开学校的路程(千米)与所经过的时间(分钟)之间的函数关系;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
如图,矩形OABC的边OA在x轴正半轴上,边OC在y轴正半轴上,B点的坐标为(1,3).矩形O'A'BC'是矩形OABC绕B点逆时针旋转得到的.O'点恰好在x轴的正半轴上, O'C'交AB于点D.
(1)求点O'的坐标,并判断△O'DB的形状(要说明理由)(4分)
(2)求边C'O'所在直线的解析式.(4分)
(3)延长BA到M使AM=1,在(2)中求得的直线上是否存在点P,使得ΔPOM是以线段OM为直角边的直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.(2分)
甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.
(1)求甲组加工零件的数量y与时间之间的函数关系式.(2分)
(2)当x=2.8时,甲、乙两组共加工零件 件;
乙组加工零件总量的值为 .(4分)
(3) 加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱? (2分)
某长途汽车站规定,乘客可以免费最多携带质量a千克的行李,若超过a千克则需购买行李票,且行李票(元)与行李质量(千克)间的一次函数关系式为,现知贝贝带了60千克的行李,交了行李费7元。
(1)若京京带了80千克的行李,则该交行李费多少元?
(2)求a的值.
某工厂有两批数量相同的产品生产任务,分别交给甲、乙两个小组同时进行生产.如图是反映生产数量y(件)与生产时间x(h)之间关系的部分图象.请解答下列问题:
⑴乙小组生产到30 件时,用了 h.生产6 h时,甲小组比乙小组多生产了 件;
⑵ 请你求出:
①甲小组在0≤x≤6的时段内,y与x之间的函数关系式;(直接写出结论)
②乙小组在2≤x≤6的时段内,y与x之间的函数关系式;(直接写出结论)
③生产几小时后,甲小组所生产的数量开始超过乙小组? (要求写出过程)
⑶ 如果甲小组生产速度不变,乙小组在生产6 h后,生产速度增加到12 件/h,结果两小组同时完成了任务.问甲小组从开始生产到完工所生产的数量为多少件?(要求写出过程)
如图,在平面直角坐标系xoy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相较于点N.
求M,N的坐标;
在矩形ABCD中,已知AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个
单位长度的速度移动.设矩形ABCD与△OMN的重叠部分的面积为S.移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束)。直接写出S与自变量t之间的函数关系式(不需要给出解答过程);
在(2)的条件下,当t为何值时,S的值最大?并求出最大值.
某工厂生产A、B两种产品共50件,其生产成本与利润如下表:
|
A种产品 |
B种产品 |
成本 (万元/件) |
0.6 |
0.9 |
利润 (万元/件) |
0.2 |
0.4 |
若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?
今年春季,我省云南、贵州等西南地区遇到多年不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩。现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩。
(1)设甲种柴油发电机的数量为x台,乙种柴油发电机数量y台。
①用含x、y的式子表示丙种柴油发电机的数量;
②求出y与x的函数解析式;
(2)已知甲、乙、丙柴油发电机每小时费用分别为130元、120元 、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用w最少?
大学生李萌同学利用暑假参加社会实践,为某报社推销报纸,订购价格是每份0.7元,销售价是每份1元,卖不掉的报纸由报社发行部以每份0.2元回收,在一个月内(以31天计算)约有20天每天可卖出100份,其余11天每天可卖出60份,但报社发行部要求每天订购的报纸份数必须相同,若每天订购x份为自变量,该月所获得的利润y(元)为x的函数.
(1)写出y与x的函数关系式,并指出x自变量的取值范围。
(2)李萌同学应该每天订购多少份该报纸,才能使该月获得的利润最大?并求出这个最大值。
如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.
⑴ 写出y与x之间的函数关系式及x的取值范围;
⑵ 说明是否存在点P,使四边形APCD的面积为1.5?
在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
(3)当t=2秒时,求四边形OPQB的面积.
为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.
(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
张勤同学的父母在外打工,家中只有年迈多病的奶奶.星期天早上,李老师从家中出发步行前往张勤家家访.6分钟后,张勤从家出发骑车到相距1200米的药店给奶奶买药,停留14分钟后以相同的速度按原路返回,结果与李老师同时到家.张勤家、李老师家、药店都在东西方向笔直大路上,且药店在张勤家与李老师家之间.在此过程中设李老师出发t(0≤t≤32)分钟后师生二人离张勤家的距离分别为S1、S2.S与t之间的函数关系如图所示,请你解答下列问题:
(1)李老师步行的速度为 ;
(2)求S2与t之间的函数关系式,并在如图所示的直角坐标系中画出其函数图象;
(3)张勤出发多长时间后在途中与李老师相遇?