(12分)已知二次函数中,函数与自变量的部分对应值如下表:
… |
… |
|||||||
… |
… |
(1)求该二次函数的关系式;
(2)当为何值时,有最小值,最小值是多少?
(3)若,两点都在该函数的图象上,试比较与的大小.
(本小题满分15分)如图1,抛物线经过点A和点B.已知点A的坐标是(2,4),点B的横坐标是-2.
(1)求的值及点B的坐标;
(2)设点D为线段AB上的一个动点,过D作x轴的垂线,垂足为点H.在DH的右侧作等边△DHG. 将过抛物线顶点M的直线记为,设与x轴交于点N.
① 如图1,当动点D的坐标为(1,2)时,若直线过△DHG的顶点G.求此时点N的横坐标是多少?
② 若直线与△DHG的边DG相交,试求点N横坐标的取值范围.
(本题8分) 已知:抛物线与x轴相交于A、B两点(A点在B点的左侧),
顶点为P.
(1)求A、B、P三点坐标;
(2)画出此抛物线的简图,并根据简图直接写出当时,函数值y的取值范围;
我校南校区要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.
(1)求这条抛物线的解析式;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的
水流不至于落在池外?
已知二次函数的关系式为y=x2+6x+8.
(1)求这个二次函数图象的顶点坐标;
(2)当x的取值范围是 ▲ 时,y随x的增大而减小.
.(6分)在直角坐标平面内,二次函数y=ax2+bx-3(a≠0)图象的顶点为
A(1,-4).
(1)求该二次函数关系式;
(2)将该二次函数图象向上平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.
如图,已知二次函数 的图象经过
A( , ),B(0,7)两点.
⑴ 求该抛物线的解析式及对称轴;
⑵ 当 为何值时, ?
⑶ 在 轴上方作平行于 轴的直线 ,与抛物线交于C,D两点(点C在对称轴的左侧),
过点C,D作 轴的垂线,垂足分别为F,E.当矩形CDEF为 正方形时,求C点的坐标.
已知关于x的二次函数 的图象经过点 ,且与x轴交于不同的两点 、 ,点 的坐标是 .
(1)求
的值;
(2)求
的取值范围;
(3)该二次函数的图象与直线 交于 , 两点,设1, 的面积为 ,当 时,求证: 为常数,并求出该常数.
已知抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,)和(m-b,m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0.
(1)求c的值;
(2)设抛物线y=ax2+bx+c与x轴的两个交点是(x1,0)和(x2,0),求x1x2的值;
(3)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(xo,yo ),求这时|yo|的最小值.
已知抛物线与x轴没有交点.
(1)求c的取值范围;
(2)试确定直线经过的象限,并说明理由.
富根老伯想利用一边长为a米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形。
如果设猪舍的宽AB为x米,则猪舍的总面积S(米2)与x有怎样的函数关系?
请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC和宽AB的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?
、已知y与x2成正比例,并且当x=1时,y=2,求函数y与x的函数关系式,并求当x=-3时,y的值.当y=8时,求x的值.
一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(米)与时间t(秒)的数据如下表:
时间t(秒) |
1 |
2 |
3 |
4 |
… |
距离s(米) |
2 |
8 |
18 |
32 |
… |
写出用t表示s的函数关系式。