一个二次函数的图象经过点(0,0),(-1,-1),(1,9)三点,求这个函数的关系式
如图12,把抛物线(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线,抛物线与抛物线关于轴对称.点、、分别是抛物线、与轴的交点,、分别是抛物线、的顶点,线段交轴于点.
(1)分别写出抛物线与的解析式;
(2)设是抛物线上与、两点不重合的任意一点,点是点关于轴的对称点,试判断以、、、为顶点的四边形是什么特殊的四边形?说明你的理由.
(3)在抛物线上是否存在点,使得,如果存在,求出点的坐标,如果不存在,请说明理由.
已知抛物线交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.
(1)求b、c的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.
求证:四边形ODBE是等腰梯形;
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的?若存在,求点Q的坐标;若不存在,请说明理由.
如图8所示,二次函数的图象经过
坐标原点O和A(4, 0).
(1)求出此二次函数的解析式;
(2)若该图象的最高点为B,试求出△ABO的面积;
(3)当时,的取值范围是___________.
如图11-1,有一座抛物线型拱桥,涨潮时桥内水面宽AB为8米,落潮时水位下降5米,桥内水面宽CD为12米.
(1)建立适当的平面直角坐标系,并求此抛物线的解析式;
(2)如图11-2,某种货船在水面上的部分的横截面是梯形EFGH,且HE=FG,EF= HE,∠GHE=45°.试问落潮时,能顺利通过拱桥的这种货船在水面上的部分最大高度是多少?
如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
① 当时,判断点P是否在直线ME上,并说明理由;
② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.