如图,点C、D是以线段AB为公共弦的两条圆弧的中点,AB=4,点E、F分别是线段CD,AB上的动点,设AF=x,AE2-FE2=y,则能表示y与x的函数关系的图象是( )
已知二次函数(a≠0)的图象如图所示,则下列结论:
① ac >0; ② a–b +c <0; ③当x <0时,y <0;
④方程(a≠0)有两个大于-1的实数根.
其中错误的结论有
A.② ③ | B.② ④ | C.① ③ | D.① ④ |
(本小题满分11分)
二次函数的图像如图8所示,请将此图像向右平移1个单位,再向下平移2个单位.
(1)画出经过两次平移后所得到的图像,并写出函数的解析式.
(2)求经过两次平移后的图像与x轴的交点坐标,当x满足什么条件时,函数值大于0?
在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点.
(1)求此抛物线的解析式;
(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)
某种火箭被竖直向上发射时,它的高度与时间的关系可以用公式表示.经过________,火箭达到它的最高点.
二次函数的图象如图所示,则下列结论正确的是
A. |
B. |
C. |
D. |
已知二次函数的图象与轴两交点的坐标分别为(,0),(,0)().
(1)证明;
(2)若该函数图象的对称轴为直线,试求二次函数的最小值.
如图,在直角梯形中,∥,,点为坐标原点,点在轴的正半轴上,对角线,相交于点,,.
(1)线段的长为 ,点的坐标为 ;
(2)求△的面积;
(3)求过,,三点的抛物线的解析式;
(4)若点在(3)的抛物线的对称轴上,点为该抛物线上的点,且以,,,四点为顶点的四边形为平行四边形,求点的坐标.
(满分13分)如图11,在平面直角坐标系中,直线与轴、轴分别交于点B、C ;抛物线经过B、C两点,并与轴交于另一点A.
(1)求该抛物线所对应的函数关系式;
(2)设是(1)所得抛物线上的一个动点,过点P作直线轴于点M,交直线BC于点N .
① 若点P在第一象限内.试问:线段PN的长度是否存在最大值 ?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;
② 求以BC为底边的等腰△BPC的面积.
二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是( )
A.ab<0 |
B.ac<0 |
C.当x<2时,函数值随x增大而增大;当x>2时,函数值随x增大而减小 |
D.二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根 |
如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(16,0)、与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;
(1) 求拋物线的函数表达式;
(2) 如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A、B两点重合,点Q不与C、D两点重合)。设点A的坐标为(m,n) (m>0)。
j当PO=PF时,分别求出点P和点Q的坐标;
k在j的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
l当n=7时,是否存在m的值使点P为AB边中点。若存在,请求出m的值;若不存在,请说明理由。
已知抛物线
上有不同的两点E
和F
.
(1)求抛物线的解析式.
(2)如图,抛物线
与
轴和
轴的正半轴分别交于点
和
,
为
的中点,
在
的同侧以
为中心旋转,且
,
交
轴于点
,
交
轴于点
.设
的长为
,BC的长为
,求
和
之间的函数关系式
(3)当m,n为何值时,∠PMQ的边过点F.
如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).
(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?
已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.
如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧). 已知点坐标为(,).
(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点