初中数学

某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。求:
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天赢利最多?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.
(1)当每间商铺的年租金定为15万元时,能租出多少间?
(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为284万元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于任意实数a、b,定义f(a,b)=a2+5a-b,如:f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是(   )

A.1或-6 B.-1或6 C.-5或1 D.5或-1
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).

(1)求线段CD的长;
(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?
(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.
①t为何值时,l经过点C?
②求当l经过点D时t的值,并求出此时刻线段PQ的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商品的进价为每件40元,售价为每件50元,每个月可卖出210件.如果每件商品的售价每上涨1元,则每个月少卖10件.当每件商品的售价定为多少元时,每个月的利润恰为2200元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于x的方程,有以下三个结论:①当m=0时,方程只有一个实数解②当时,方程有两个不等的实数解③无论m取何值,方程都有一个负数解,其中正确的是          (填序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

20.解方程:
(1)解方程:x2-6x-2=0;
(2)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于x的一元二次方程
(1)若此方程有两个不相等的实数根,求实数k的取值范围;
(2)已知x=3是此方程的一个根,求方程的另一个根及k的值;
(3)当Rt△ABC的斜边长C=,且两条直角边A和B恰好是这个方程的两个根时,求Rt△ABC的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

2013年,东营市某楼盘以每平方米6500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.
(1)求平均每年下调的百分率;
(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于x的一元二次方程
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒 (0<t<5).
(1)当t为何值时,四边形PQCM是平行四边形?
(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形PQCMS△ABC?若存在,求出t的值;若不存在,说明理由;
(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,直线CD与x轴、y轴分别交于点C、D,AB与CD相交于点E,线段OA、OC的长是一元二次方程-18x+72=0的两根(OA>OC),BE=5,tan∠ABO=

(1)求点A,C的坐标;
(2)若反比例函数y=的图象经过点E,求k的值;
(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一元二次方程的最值试题