某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?
小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.
如图,已知菱形 A B C D 的对角线相交于点 O ,延长 A B 至点 E ,使 B E = A B ,连接 C E . (1)求证: B D = E C ; (2)若 ∠ E = 50 ° ,求 ∠ B A O 的大小.
解不等式2(x﹣1)﹣3<1,并把它的解集在数轴上表示出来.
计算:(1)(2)(x+1)2﹣x(x+2)
已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA)、B(0,yB)、C(-1,yC)在该抛物线上.(Ⅰ)当a=1,b=4,c=10时,①求顶点P的坐标;②求-的值;(Ⅱ)当y0≥0恒成立时,求的最小值.