初中数学

目前世界上最高的电视塔是广州新电视塔“小蛮腰”,如图所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.

求大楼与电视塔之间的距离AC;
求大楼的高度CD(精确到1米).
(tan39°≈0.81,,cos39°≈0.78,,sin39°≈0.63)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在某市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理. 已知运往D地的数量比运往E地的数量的2倍少l0立方来.
求运往D、E两地的数量各是多少立方米?
若A地运往D地立方米(为整数), B地运往D地30立方米. C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地.且C地运往E地不超过 l2立方米.则A、C两地运往D、E两地有哪几种方案?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为了参加2011年国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

解方程:
解方程组:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

铜仁某水果店销售公司准备从外地购买西瓜31吨、柚子12吨,现计划租甲、乙两种货车共10辆,将这批水果运到铜仁,已知甲种货车可装西瓜4吨和柚子1吨,乙种货车可装西瓜、柚子2吨
该公司安排甲、乙两种货车时有几种方案?
若甲种货车每辆要付运输费用1800元,乙种货车每辆要付运输费用1200元,则该公司选择哪种方案运费最少?最少运费是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图12,端午节期间,某地举行龙舟比赛。甲、乙两支龙舟队在比赛时路程y(米)与时间x(分钟)之间的函数图象如图所示,根据图象回答下列问题:

1.8分时,哪支龙舟队处于领先位置?
在这次龙舟比赛中,哪只龙舟队先到达终点?先到达多长时间?
求乙队加速后,路程y(米)与时间x(分钟)之间的函数解析式。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

病人按规定的剂量服用某种药物.测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例;2小时后y与x成反比例(如图所示).根据以上信息解答下列问题:

求当0≤x≤2时,y与x的函数关系式
求当x>2时,y与x的函数关系式
若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某电器城经销A型号彩电,2011年四月份每台彩电售价为2 000元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元.
2010年四月份每台A型号彩电的售价是多少元?
为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1 800元,B型号彩电每台进货价为1500元,电器城预计用不大于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,有哪几种进货方案?
电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道时,我们可以这样做:
观察并猜想:
=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
=(1+0)×1+(1+1)×2+(l+2)×3+(1+3)×4;
=1+0×1+2+1×2+3+2×3+( ___________)
=(1+2+3+4)+(___________)

归纳结论:
=(1+0)×1+(1+1)×2+(1+2)×3+…[(1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n
=(___________)+[ ___________]
= (__________)+( ___________)
=×(___________)
实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是___。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点A,B的坐标分别为A(2,4),B(4,0).
以原点O为位似中心,把线段AB缩小为原来的
若(1)中画出的线段为,请写出线段两个端点,的坐标;
若线段AB上任意一点M的坐标为(a,b),请写出缩小后的线段上对应点
的坐标.
                                   

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=AC.

作∠BAC的角平分线,交BC于点D(尺规作图,保留痕迹);
在AD的延长线上任取一点E,连接BE、CE. 求证:△BDE≌△CDE;
当AE=2AD时,四边形ABEC是菱形.请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

先阅读下列材料,再解答后面的问题
材料:一般地,n个相同的因数相乘:。如23=8,此时,3叫做以2为底8的对数,记为。一般地,若,则n叫做以为底b的对数,记为,则4叫做以3为底81的对数,记为
问题:
计算以下各对数的值:log24=           log216=         log264=        
观察(1)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?
由(2)的结果,你能归纳出一个一般性的结论吗?      logaM+logaN=         (a>0且a≠1,M>0,N>0)
根据幂的运算法则:an·am=an+m以及对数的含义证明上述结论

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在形如的式子中,我们已经研究过两种情况:①已知a和b,求N,这是乘方运算;②已知b和N,求a,这是开方运算;
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算。
定义:如果(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作:,例如:求,因为=8,所以=3;又比如∵,∴.
根据定义计算:(本小题6分)
=____;②=      
③如果,那么x=      
(a>0,a≠1,M、N均为正数),
,∴

这是对数运算的重要性质之一,进一步,我们还可以得出:
                                 .(其中M1、M2、M3、……、Mn均为正数,a>0,a≠1)(本小题2分)
请你猜想:              (a>0,a≠1,M、N均为正数).(本小题2分)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:
甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用6天。这项工程工期是多少天?
若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学应用类问题解答题