某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
2010年春季我国西南五省持续干旱,旱情牵动着全国人民的心。“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?
有这样一道题:“当=0.302,=-0.239时,求(a+b)(a-b)+(4ab-8a2b2)÷4ab-a(a-2 b)多项式的值”,有一位同学指出题目中所给的条件“=0.302,=-0.239”是多余的,问这位同学说的是否正确?若正确,请说明其理由;若不正确,多项式的值该是多少?
在同一副扑克中抽出了16张牌,其中红心有x张,方块有2x张,其他均为梅花,现将这16张牌洗匀背面朝下放在桌面上,A同学任意抽1张,若为红心则A同学获胜,A同学把抽出的牌放回并洗匀背面朝下放在桌面上,B同学再任意抽1张,若为梅花,则B同学获胜.
(1)当X=3时,谁获胜的可能性大?
(2)当x为何值时,游戏对双方是公平的?
清明节期间,文笔中学团委组织八年级部分学生去离校2.4千米的玉泉山烈士陵园扫墓,回来时乘公交车所花时间比去时步行少用了36分钟,已知公交车速度是学生步行速度的5倍,求学生的步行速度.
已知一个反比例函数的图象经过点.
(Ⅰ)求这个函数的解析式;
(Ⅱ)判断点是否在这个函数的图象上;
(Ⅲ)当时,求自变量的值.
《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上行驶速度不得超过千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方米点处,过了秒后,小汽车在点处测得与车速检测仪间距离为米,问:这辆小汽车超速了吗?
数与数之间的关系真奇妙,例如:①;②;③.某教师分析如下:⑴以上这些等式都有一个共同特征:两个实数的差等于这两个实数的商;⑵如果等号左边的第一个实数用表示,第二个实数用表示,则可以得到一个关于的关系式.请你根据以上分析,再找出一组满足上述特征的两个实数,并写成等式形式: .
甲、乙两家商场进行促销活动,甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销。
(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?
(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由。
在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,
(1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:
m |
n |
m+n |
f |
1 |
2 |
3 |
2 |
1 |
3 |
4 |
3 |
2 |
3 |
5 |
4 |
2 |
5 |
6 |
|
3 |
5 |
7 |
|
猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是______________________________(不需要证明);
(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立,
为迎接中共十八大的胜利召开,需要铺设一条长为3000米的管道.为了尽量减少施工对交通所造成的影响,实际施工时每天铺设管道的长度为原计划的1.5倍,结果提前25天完成任务,
(1)求原计划每天铺设管道的长度.
(2)求实际施工时每天铺设管道的长度.
阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么形如a+bi(a,b为实数)的数就叫做复数, a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3-4i)=5-3i.
填空:i3=_____,i4="_______" ;
计算:①;②;
若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:
已知:(x+y)+3i=(1-x)-yi,(x,y为实数),求x,y的值.
试一试:请利用以前学习的有关知识将化简成a+bi的形式