一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个。例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个。
(1)根据题意,完成下表:
车站序号 |
在第x车站启程时邮政车厢邮包总数 |
1 |
n-1 |
2 |
(n-1)-1+(n-2)=2(n-2) |
3 |
2(n-2)-2+(n-3)=3(n-3) |
4 |
|
5 |
|
… |
…… |
n |
|
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、
n表示)。
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
(本题10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?
(成本=进价×销售量)
(本题8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到 元购物券,至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
(本题6分)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD=,坡长AB=,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F=,求AF的长度.
(本题10分)
在向红星镇居民介绍王家庄位置的时候,我们可以这样说:如图,在以红星镇为原点,正东方向为x轴正方向,正北方向为y轴正方向的平面直角坐标系(1单位长度表示的实际距离为1km)中,王家庄的坐标为(5,5);也可以说,王家庄在红星镇东北方向km的地方。
还有一种方法广泛应用于航海、航空、气象、军事等领域。如右下图:在红星镇所建的雷达站O的雷达显示屏上,把周角每15°分成一份,正东方向为0°,相邻两圆之间的距离为1个单位长度(1单位长度表示的实际距离为1km),现发现2个目标,我们约定用(10,15°)表示点M在雷达显示器上的坐标,则:
(1)点N可表示为 ;王家庄位置可表示为 ;点N关于雷达站点0成中心对称的点P的坐标为 ;
(2)S△OMP= ;
(3)若有一家大型超市A在图中(4,30°)的地方,请直接标出点A,并将超市A与雷达站O连接,现准备在雷达站周围建立便民服务店B,使得△ABO为底角30°的等腰三角形,请直接写出B点在雷达显示屏上的坐标.
(本题9分)甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:
(1)请你在A,B,C,D,E五个点任意选择一个点解释它的实际意义;
(2)求线段DE对应的函数关系式;
(3)当轿车出发1h后,两车相距多少千米;
(4)当轿车出发几小时后两车相距30km?
(本题8分)如图,在梯形ABCD中,AD//BC,E是AD的中点,BC=5,AD=12,梯形高为4,∠A =45°,P为AD边上的动点.
(1)当PA的值为____________时,以点P、B、C、E为顶点的四边形为直角梯形;
(2)当PA的值为____________时,以点P、B、C、E为顶点的四边形为平行四边形;
(3)点P在AD边上运动的过程中,以P、B、C、E为顶点的四边形能否构成菱形?如果能,求出PA长.如果不能,也请说明理由.
(本题8分)如图,四边形ABCD是矩形,点O在矩形上方,点B绕着点O逆时针旋转后的对应点为点C.
(1)画出点A绕着点O逆时针旋转后的对应点E;
(2)连接CE,证明:CO平分∠ECD
(3)在(1)(2)的条件下,连接ED,猜想ED与CO的位置关系,并证明你的结论.
(本题8分)阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”.
解决下列问题:
(1)菱形的“二分线”是 ;
(2)三角形的“二分线”是 ;
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”,简述做法.
图1 图2
(本题7分)小明本学期的数学成绩如下表所示:
测验类别 |
平时 |
a |
b |
c |
|||
测试1 |
测试2 |
测试3 |
测试4 |
平时平均数 |
期中考试 |
期末考试 |
|
成绩 |
108 |
103 |
101 |
108 |
|
110 |
114 |
(1)六次考试的中位数和众数分别是什么?
(2)请计算小明该学期的数学平时平均成绩;
(3)如果学期的总评成绩是根据如图所示的比例计算所得,已知小明该学期的数学总评成绩为111分,请计算出总评成绩中期中、期末成绩各自所占的比例.
2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.
解决问题:如图,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.
在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:
(1)求这50个样本数据的平均数、众数和中位数;
(2)根据样本数据,估算该校1200名学生共参加了多少次活动.