在密码学中,你直接可以看到的内容为明文(真实文),对明文进行某种处理后得到的内容为密文.现有一种密码把英文的明文单词按字母分解,其中英文的26个字母(不论大小写)依次对应1,2,3,……26这26个自然数,见以下表格:
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
n |
o |
p |
q |
r |
s |
t |
u |
v |
w |
x |
y |
z |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
现给出一个公式:
将明文字母对应的数字x按以上公式计算得到密文字母对应的数字x',比如明文字母为g,g,所以明文字母g对应的密文字母为d.
按照上述规定,将明文good译成的密文是什么?写出你的计算过程;
图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为
如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,,求图4中所有圆圈中各数的绝对值之和.
按如图所示的程序计算,若开始输入的x的值为48,我发现第一次得到的结果为24,第二次得到的结果为12,…,请你探索:
(1)第四次得到的结果;(2)第九次得到的结果;(3)第2012次得到的结果.
先阅读下列材料,再解答后面的问题:
要求算式的值,我们可以按照如下方法进行:
设=S ① 则有2()= 2S
∴ = 2S ②
②-①得: = S ∴ = S
∴ 原式: =
㈠ 请你根据上述方法计算: = 。
㈡ 2008年美国的金融危机引发了波及全世界的经济危机,我国也在此次经济危机中深受影响,为此2009年我国积极理性的放宽信贷,帮助我国企业、特别是中小企业度过难关,尽最大努力减少我国的失业率。 某企业在应对此次危机时积极进取,决定贷款进行技术改造,现有两种方案, 甲方案: 一次性贷款10万元,第一年便可获利1万元,以后每年获利比前一年增加30%的利润;
乙方案: 每年贷款1万元,第一年可获利1万元,以后每年获利比前一年增加5千元;
两种方案的使用期都是10年,到期一次性归还本息. 若银行两种形式的贷款都按年息5%的复利计算,
试比较两种方案中,10年的总利润,哪种获利更多? ( 结果精确到0.01 )
(取1.0510 =" 1.629" , 1.310 =" 13.786" , 1.510 =" 57.665" )
( 注意:‘复利’的计算方法,例如:一次性贷款7万元,按年息5%的复利计算;⑴若1年后归还本息,则要还元。⑵若2年后归还本息,则要还元。⑶若3年后归还本息,则要还元。 )
光明奶粉每袋标准质量为454克,在质量检测中,若超出标准质量2克记为+2克,若质量低于标准质量3克和3克以上,则这袋奶粉视为不合格产品,现抽取10袋样品进行质量检测,结果如下(单位:克):
(1)这10袋奶粉中,有哪几袋不合格?
(2)质量最多的是哪袋?它的实际质量是多少?
(3)质量最少的是哪袋?它的实际质量是多少?
探索规律:将连续的偶数2,4,6,8, ,排成下表,如图:
(1)十字框中的五个数的和与中间的数18有什么关系?
(2)设中间的数为x ,用代数式表示十字框中的五个数的和;
(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2050吗?如能,写出这五位数,如不能,说明理由.
七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?
探究与思考:(①题每空1分,②题每空2分,共12分)
①现定义某种运算“*”,对任意两个有理数a、b,有a*b=ab,如(-3)*2==9.
试计算: ( -)*2 = , (-1)*(2*3)= .
②现有若干个数,第1个数记为,第二个数记为,第三个数记为……,第n个数记为,若,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数。”
(1)试计算
(2)根据以上结果,请你写出,
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数 ,点P表示的数 (用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;
(4)若点D是数轴上一点,点D表示的数是x,请你探索式子是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
在数轴上,A点表示2,现在点A向右移动两个单位后到达点B;再向左移动10个单位到达C点:
(1)请在数轴上表示出A点开始移动时位置及B、C点位置;
(2)当A点移动到C点时,若要再移动到原点,问必须向哪个方向移动多少个单位?
(3)请把A点从开始移动直至到达原点这一过程,用一个有理数算式表达出来.
(1)阅读下面材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
如图3,点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
如图4,点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣=" a" +(-b)=∣a-b∣;
(2)回答下列问题:
数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是_________,数轴上表示1和-3的两点之间的距离是_______;(共3分)
数轴上表示x和-1的两点A和B之间的距离是_____,如果∣AB∣=2,那么x为_ ___ (共4分)
当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,相应的x的值是___________;此时代数式∣x+1∣+∣x-2∣+∣x+3∣的值是_____________.
有依次排列的3个数:3,9,8,对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,,,9,8,继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少?(共12分)