端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.
(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;
(2)请你计算小悦拿到的两个粽子都是肉馅的概率.
某校开展了"禁毒"知识的宣传教育活动.为了解这次活动的效果,现随机抽取部分学生进行知识测试,并将所得数据绘制成不完整的统计图表.
等级 |
频数(人数) |
频率 |
优秀 |
60 |
0.6 |
良好 |
|
0.25 |
合格 |
10 |
|
基本合格 |
5 |
0.05 |
合计 |
|
1 |
根据统计图表提供的信息,解答下列问题:
(1) , , ;
(2)补全条形统计图;
(3)该学校共有1600名学生,估计测试成绩等级在合格以上(包括合格)的学生约有多少人?
(4)在这次测试中,九年级(3)班的甲、乙、丙、丁四位同学的成绩均为"优秀",现班主任准备从这四名同学中随机选取两名同学出一期"禁毒"知识的黑板报,请用列表法或画树状图法求甲、乙两名同学同时被选中的概率.
某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)
2021年5月,菏泽市某中学对初二学生进行了国家义务教育质量检测,随机抽取了部分参加15米折返跑学生的成绩,学生成绩划分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.根据图中提供的信息解答下列问题:
(1)请把条形统计图补充完整;
(2)合格等级所占百分比为 ;不合格等级所对应的扇形圆心角为 度;
(3)从所抽取的优秀等级的学生 、 、 中,随机选取两人去参加即将举办的学校运动会,请根据列表或画树状图的方法,求出恰好抽到 、 两位同学的概率.
某校4月份八年级的生物实验考查,有 、 、 、 四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.
(1)小丽参加实验 考查的概率是 ;
(2)用列表或画树状图的方法求小明、小丽都参加实验 考查的概率.
为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从 ."北斗卫星"; ." 时代"; ."东风快递"; ."智轨快运"四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成不完整的统计图,请根据统计图中的信息解答下列问题:
(1)九(1)班共有 名学生;
(2)补全折线统计图;
(3) 所对应扇形圆心角的大小为 ;
(4)小明和小丽从 、 、 、 四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
有2部不同的电影 、 ,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择 电影的概率;
(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).
箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是 .
某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.
请结合图中信息,解决下列问题:
(1)此次调查中接受调查的人数为 人,其中“非常满意”的人数为 人;
(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众均来自甲片区的概率.
某校为了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查,调查结果分为“非常了解“、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制出以下两幅不完整的统计图.请根据统计图回答下列问题:
(1)本次调查的学生共有 人,估计该校2000名学生中“不了解”的人数约有 人.
(2)“非常了解”的4人中有 , 两名男生, , 两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图和列表的方法,求恰好抽到2名男生的概率.
学习习近平总书记关于生态文明建设重要讲话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校,某校张老师为了了解本班学生3月植树成活情况,对本班全体学生进行了调查,并将调查结果分为了三类: :好, :中, :差.
请根据图中信息,解答下列问题:
(1)求全班学生总人数;
(2)将上面的条形统计图与扇形统计图补充完整;
(3)张老师在班上随机抽取了4名学生,其中 类1人, 类2人, 类1人,若再从这4人中随机抽取2人,请用画树状图或列表法求出全是 类学生的概率.
箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是 .
汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.
(1)若前四局双方战成 ,那么甲队最终获胜的概率是 ;
(2)现甲队在前两局比赛中已取得 的领先,那么甲队最终获胜的概率是多少?
如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点 的概率是
A. |
|
B. |
|
C. |
|
D. |
|
为了倡导“节约用水,从我做起”,某市政府决定对该市直属机关200户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在 吨范围内,并将调查结果制成了如下尚不完整的统计表:
月平均用水量(吨 |
3 |
4 |
5 |
6 |
7 |
频数(户数) |
4 |
|
9 |
10 |
7 |
频率 |
0.08 |
0.40 |
|
|
0.14 |
请根据统计表中提供的信息解答下列问题:
(1)填空: , , .
(2)这些家庭中月平均用水量数据的平均数是 ,众数是 ,中位数是 .
(3)根据样本数据,估计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?
(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中,选取两户进行“节水”经验分享.请用列表或画树状图的方法,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果.