学习习近平总书记关于生态文明建设重要讲话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校,某校张老师为了了解本班学生3月植树成活情况,对本班全体学生进行了调查,并将调查结果分为了三类: A :好, B :中, C :差.
请根据图中信息,解答下列问题:
(1)求全班学生总人数;
(2)将上面的条形统计图与扇形统计图补充完整;
(3)张老师在班上随机抽取了4名学生,其中 A 类1人, B 类2人, C 类1人,若再从这4人中随机抽取2人,请用画树状图或列表法求出全是 B 类学生的概率.
如图,经过点A(0,﹣6)的抛物线与x轴相交于B(﹣2,0),C两点. (1)求此抛物线的函数关系式和顶点D的坐标; (2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围; (3)在(2)的结论下,新抛物线y1上是否存在点Q,使得△QAB是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围.
如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点.若AB=6cm. (1)AE的长为cm; (2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值; (3)求点D′到BC的距离.
如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO. (1)所对的圆心角∠AOB=; (2)求证:PA=PB; (3)若OA=3,求阴影部分的面积.
如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC的边OA,OC分别在轴和轴上,其中OA=6,OC=3.已知反比例函数(x>0)的图象经过BC边上的中点D,交AB于点E. (1)k的值为; (2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.
如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快. (1)甲蚂蚁选择“向左”爬行的概率为; (2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.