某市第三中学组织学生参加生命安全知识网络测试.小明对九年级2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.
根据图表中的信息解答下列问题:
(1)求九年级2班学生的人数;
(2)写出频数分布表中,的值;
(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;
(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.
组别 |
分数段 |
频数 |
2 |
||
5 |
||
17 |
||
为宣传6月8日世界海洋日,某校九年级举行了主题为"珍惜海洋资源,保护海洋生物多样性"的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:
(1)本次调查一共随机抽取了 个参赛学生的成绩;
(2)表1中 ;
(3)所抽取的参赛学生的成绩的中位数落在的"组别"是 ;
(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有 人.
表1知识竞赛成绩分组统计表
组别 |
分数 分 |
频数 |
|
|
|
|
|
10 |
|
|
14 |
|
|
18 |
某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号 |
分组 |
频数 |
一 |
6≤m<7 |
2 |
二 |
7≤m<8 |
7 |
三 |
8≤m<9 |
a |
四 |
9≤m≤10 |
2 |
(1)求a的值;
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).
为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表
组别 |
频数 |
|
8 |
|
12 |
|
|
|
10 |
(1)求 的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在 (含 以上的人数.
某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:
某校60名学生体育测试成绩频数分布表
成绩 |
划记 |
频数 |
百分比 |
优秀 |
|
|
|
良好 |
|
30 |
|
合格 |
|
9 |
|
不合格 |
|
3 |
|
合计 |
60 |
60 |
|
如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为 人.
某地某月 日中午12时的气温(单位: 如下:
22 31 25 15 18 23 21 20 27 17
20 12 18 21 21 16 20 24 26 19
(1)将下列频数分布表补充完整:
气温分组 |
划记 |
频数 |
|
3 |
|
|
|
|
|
|
|
|
2 |
(2)补全频数分布直方图;
(3)根据频数分布表或频数分布直方图,分析数据的分布情况.
"学而时习之,不亦说乎?"古人把经常复习当作是一种乐趣.某校为了解九年级(一 班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:
1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4
九年级(一 班女生一周复习时间频数分布表
复习时间 |
频数(学生人数) |
1小时 |
3 |
2小时 |
|
3小时 |
4 |
4小时 |
6 |
(1)统计表中 ,该班女生一周复习时间的中位数为 小时;
(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为 ;
(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?
(4)在该班复习时间为4小时的女生中,选择其中四名分别记为 , , , ,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中 和 的概率.
为庆祝中国共产党建党100周年,某校开展了以"学习百年党史,汇聚团结伟力"为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成 , , , , 五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:
等级 |
成绩 |
|
|
|
|
|
|
|
|
|
|
(1)本次调查一共随机抽取了 名学生的成绩,频数分布直方图中 ;
(2)补全学生成绩频数分布直方图;
(3)所抽取学生成绩的中位数落在 等级;
(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?
杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).
甲组杨梅树落果率频数分布表
落果率 |
组中值 |
频数(棵 |
|
|
12 |
|
|
4 |
|
|
2 |
|
|
1 |
|
|
1 |
(1)甲、乙两组分别有几棵杨梅树的落果率低于 ?
(2)请用落果率的中位数或平均数,评价市农科所"用防雨布保护杨梅果实"的实际效果;
(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.
垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.
(1)以下三种抽样调查方案:
方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;
方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;
方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.
其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是 (填写“方案一”、“方案二”或“方案三” ;
(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表 分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为 分)
样本容量 |
平均分 |
及格率 |
优秀率 |
最高分 |
最低分 |
100 |
83.59 |
|
|
100 |
52 |
分数段 |
|
|
|
|
|
频数 |
5 |
7 |
18 |
30 |
40 |
结合上述信息解答下列问题:
①样本数据的中位数所在分数段为 ;
②全校1565名学生,估计竞赛分数达到“优秀”的学生有 人.
“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日 ,全球接种“新冠”疫苗的比例为 ;中国累计接种4.2亿剂,占全国人口的 .以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:
甲医院 |
乙医院 |
||||
年龄段 |
频数 |
频率 |
频数 |
频率 |
|
周岁 |
900 |
0.15 |
400 |
0.1 |
|
周岁 |
|
0.25 |
1000 |
0.25 |
|
周岁 |
2100 |
|
|
0.225 |
|
周岁 |
1200 |
0.2 |
1200 |
0.3 |
|
60周岁以上 |
300 |
0.05 |
500 |
0.125 |
|
(1)根据上面图表信息,回答下列问题:
①填空: , , ;
②在甲、乙两医院当天接种疫苗的所有人员中, 周岁年龄段人数在扇形统计图中所占圆心角为 ;
(2)若 、 、 三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.
某校为了了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,调查发现学生每天课后进行体育锻炼的时间都不超过100分钟,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,解答下列问题:
组别 |
锻炼时间(分 |
频数(人) |
百分比 |
|
|
12 |
|
|
|
|
|
|
|
18 |
|
|
|
6 |
|
|
|
3 |
|
(1)本次调查的样本容量是 ;表中 , ;
(2)将频数分布直方图补充完整;
(3)已知 组有2名男生和1名女生,从中随机抽取两名学生,恰好抽到1名男生和1名女生的概率是 ;
(4)若该校学生共有2200人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生共有多少人?
某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).
某校七年级各班一周收集的可回收垃圾的质量的频数表
组别 |
频数 |
|
2 |
|
|
|
3 |
|
1 |
(1)求 的值;
(2)已知收集的可回收垃圾以0.8元 被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?
某批彩色弹力球的质量检验结果如下表:
抽取的彩色弹力球数 |
500 |
1000 |
1500 |
2000 |
2500 |
优等品频数 |
471 |
946 |
1426 |
1898 |
2370 |
优等品频率 |
0.942 |
0.946 |
0.951 |
0.949 |
0.948 |
(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图
(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(精确到0.01)
(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.
(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为 ,求取出了多少个黑球?