初中数学

如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,求DE∶EC的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.

(1)求证:KE=GE;
(2)若=KD·GE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE=,AK=,求FG的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,已知动点P在正比例函数y = x的图象上,点P的横坐标为m (m > 0).以点P为圆心,m为半径的圆交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点(D点在点C的上方).点E为平行四边形DOPE的顶点(如图).

(1)直接写出点B、E的坐标(用含m的代数式表示);
(2)连接DB、BE,设△BDE的外接圆交y轴于点Q (点Q异于点D),连接EQ、BQ.试问线段BQ与线段EQ的长是否相等?为什么?
(3)连接BC,求∠DBC −∠DBE的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=AC,若△ABC≌△DEF,且点A在DE上,点E在BC上,EF与AC交于点G.求证:△ABE∽△ECG.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=1200

求证(1)△ACP∽△PDB,
(2)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.
(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△ABC中,CD是边AB上的高,且

(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.

(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写"真"或"假" )

①四条边成比例的两个凸四边形相似; (   命题)

②三个角分别相等的两个凸四边形相似; (   命题)

③两个大小不同的正方形相似. (   命题)

(2)如图1,在四边形 ABCD 和四边形 A 1 B 1 C 1 D 1 中, ABC = A 1 B 1 C 1 BCD = B 1 C 1 D 1 AB A 1 B 1 = BC B 1 C 1 = CD C 1 D 1 .求证:四边形 ABCD 与四边形 A 1 B 1 C 1 D 1 相似.

(3)如图2,四边形 ABCD 中, AB / / CD AC BD 相交于点 O ,过点 O EF / / AB 分别交 AD BC 于点 E F .记四边形 ABFE 的面积为 S 1 ,四边形 EFCD 的面积为 S 2 ,若四边形 ABFE 与四边形 EFCD 相似,求 S 2 S 1 的值.

来源:2019年湖南省长沙市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,矩形PQMN内接于△ABC,矩形周长为24,AD⊥BC交PN于E,且BC=10,AE=16,求△ABC的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆A、B,恰好被南岸的两棵树C、D遮住,并且在这两棵树之间还有三棵树,求河的宽度.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE与BC分别与AD、AE相交于点F、G,CB=5.
回答下列问题:

(1)求证:△GAF∽△GBA;
(2)求证:AF2=FG•FC;
(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)
(4)探究BF2、FG2、GC2之间的关系,证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△ABC的边BC在直线l上,AD是△ABC的高,∠ABC=45°,BC=6cm,AB=2cm.点P从点B出发沿BC方向以1cm/s速度向点C运动,当点P到点C时,停止运动.PQ⊥BC,PQ交AB或AC于点Q,以PQ为一边向右侧作矩形PQRS,PS=2PQ.矩形PQRS与△ABC的重叠部分的面积为S(cm2),点P的运动时间为t(s).回答下列问题:

(1)AD=         cm;
(2)当点R在边AC上时,求t的值;
(3)求S与t之间的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求sinB的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=6,BC=10,点P在边BC上,点Q在边CD上,

(1)如图1,将△ADQ沿AQ折叠,点D恰好与点P重合,求CQ的长;
(2)如图2,若CQ=2,且△ABP与△PCQ相似,求BP的长;
(3)若点Q是CD边上的一点,且BC上不存在满足AP⊥PQ的点P,请探究:此时CQ的长必须满足什么条件?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.

(1)AB=CD;
(2)DP•BD=AD•BC;
(3)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题