初中数学

如图,已知AC,EC分别为正方形ABCD和正方形EFCG的对角线,点E在△ABC内,连接BF,∠CAE+∠CBE=90°.

(1)求证:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△ABC中,CD是边AB上的高,且

(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.

(1)求EC的值;
(2)求证:AD•AG=AF•AB.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:
(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;
(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,E为边AD的中点,且DF:CF=1:3,连接EF并延长交BC的延长线于点G,

(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=6,BC=10,点P在边BC上,点Q在边CD上,

(1)如图1,将△ADQ沿AQ折叠,点D恰好与点P重合,求CQ的长;
(2)如图2,若CQ=2,且△ABP与△PCQ相似,求BP的长;
(3)若点Q是CD边上的一点,且BC上不存在满足AP⊥PQ的点P,请探究:此时CQ的长必须满足什么条件?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

己知:如图,在菱形ABCD中,点M、N分别在边AD、AB,∠DCM=∠BCN,CN与BD交于点E.

(1)求证:DM=BN;
(2)当四边形MNBE是平行四边形时,求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).

(1)画出△ABC关于x轴对称的△A1B1C1
(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2∶1.
(3)请写出(2)中放大后的△A2B2C2中A2B2边的中点P的坐标..

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;                  

(1)先作△ABC关于直线成轴对称的图形,再向上平移1个单位,得到△A1B1C1
(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△ A2B2C2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示的一张矩形纸片),将纸片折叠一次,使点重合,再展开,折痕边于,交边于,AC与EF交于点O,分别连结.在线段上是否存在一点,使得2AE2=AC·AP?若存在,请说明点的位置,并予以证明;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,


(1)求证:AC2=AB•AD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB中点.

(1)求证:AC2=AB•AD;
(2)若AD=4,AB=6,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,△ABC在直角坐标平面内,三个顶点的坐标分别为A(-2, 2)、B(-1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出△ABC关于y轴的轴对称图形△A1B1C1
(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2与△A1B1C1位似,且位似比为2:1;
(3)求△A1B1C1与△A2B2C2的面积比.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题