己知:如图,在菱形ABCD中,点M、N分别在边AD、AB,∠DCM=∠BCN,CN与BD交于点E.(1)求证:DM=BN;(2)当四边形MNBE是平行四边形时,求证:.
如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P、Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为t(t >0)秒.(1)求线段AC的长度;(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(3)伴随着P、Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.
某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE. (1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长。 (4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.
如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
如图(1),Rt△ABC和Rt△EFD中,AC与DE重合,AB=EF=1,∠BAC=∠DEF=90º,∠ACB=∠EDF=30º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止。现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2) (1)问:始终与△AGC相似的三角形是 ; (2)设CG=x,BG=y,求y关于x的函数关系式; (3)问:当x为何值时,△HGA是等腰三角形。
如图,平面之间坐标系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=,经过O,C两点做抛物线(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0) (1)填空:用含t的代数式表示点A的坐标及k的值:A ,k= ; (2)随着三角板的滑动,当a=1时: ①请你验证:抛物线的顶点在函数的图象上; ②当三角板滑至点E为AB的中点时,求t的值。