初中数学

已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.

(1)求证:△ABE∽△DEA;
(2)若AB=4,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,∠A=30°.请把Rt△ABC分割成三个三角形,其中有两个三角形和原Rt△ABC相似,第三个三角形为等腰三角形.画图要求:

(1)工具不限,画图准确,标出能说明画法的符号或角度.
(2)用三种不同的方法画图,有一条分割线的位置不同即视为不同的画法.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在等边△ABC中,点D在BC边上,点E在AC边上,且∠ADE=60°.

(1)求证:△ABD∽△DCE;
(2)若AB=9cm,BD=3cm,求EC的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;
(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求sinB的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角系中,直线分别交轴、轴于两点,直线分别交轴、轴于两点,轴上的一点,,过轴交,连接,当动点在线段上运动(不与点重合)且

(1)求证:
(2)求线段的长(用的代数式表示);
(3)若直线的方程是,求tan∠BAC的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,在梯形ABCD中,AD//BC,∠BCD=90º,对角线AC、BD相交于点E,且AC⊥BD.

(1)求证:
(2)点F是边BC上一点,联结AF,与BD相交于点G.如果∠BAF =∠DBF,求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△中,平分于点于点.求的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是      
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是         
(3)△A2B2C2的面积是        平方单位.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q.记△AEF的面积为S1,四边形EFQP的面积为S2,四边形PQCB的面积为S3
 
(1)求证:EF+PQ=BC
(2)若S1+S3=S2,求的值

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=2β.求证:tanα•tanβ=

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于O,连结AP、OP、OA.

(1)求证:△OCP∽△PDA;
(2)若△OCP与△PDA的面积比为1:4,求边AB的长;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.

(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题