图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q.记△AEF的面积为S1,四边形EFQP的面积为S2,四边形PQCB的面积为S3 (1)求证:EF+PQ=BC (2)若S1+S3=S2,求的值
把下列各式进行因式分解: (1)3ax2-6axy+3ay2; (2)x2(x-y)+(y-x).
计算:(3x2)2•(-4y3)÷(6xy)2.
在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x轴上,且点B在点C的左侧,满足BC=OA,若-3am-1b2与anb2n-2是同类项且OA=m,OB=n. (1)m=;n=. (2)点C的坐标是. (3)若坐标平面内存在一点D,满足△BCD全等△ABO,试求点D的坐标.
如图,在△ABC中,∠ACB=90°,CD⊥AB于D.把三角形沿AE对折使点C落在AB边上的点F上,CD与折痕AE相交于G,连结FG并延长交AC于H. (1)判断FH与BC的位置关系,并说明理由; (2)判断HG与DG的数量关系,并说明理由.
列一元一次不等式(组)解决实际问题: 元旦联欢会上,班级为同学们买了一批小礼物,如果每个人分3个,还多5个;如果每个人分4个,就会有一个人能分到但分不到4个,若已知班级学生的人数是奇数,试问这些小礼物共有多少个?