如图,直线
与y轴交于A点,与反比例函数
(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=
. 
(1)求k的值;
(2)设点N(1,a)是反比例函数
(x>0)图像上的点,在y轴上是否存在点P,使得PM+PN最小,若存在,求出点P的坐标;若不存在,请说明理由.
已知函数y=(m﹣1)x|m|﹣2是反比例函数.
(1)求m的值;
(2)求当x=3时,y的值.
已知变量y与变量x之间的对应值如下表:
x … 1 2 3 4 5 6 …
y … 6 3 2 1.5 1.2 1 …
试求出变量y与x之间的函数关系式: .
如图,反比例函数y=
(x>0)与正比例函数y=k2x的图象分别交矩形OABC的BC边于M(4,1),B(4,5)两点.
(1)求反比例函数和正比例函数的解析式;
(2)若一个点的横坐标、纵坐标都是整数,则称这个点为格点.请你写出图中阴影区域BMN(不含边界)内的所有格点关于y轴对称的点的坐标.
在Rt△ABC中,∠C=90°,∠A=30°,BC=2.若将此直角三角形的一条直角边BC或AC与x轴重合,使点A或点B刚好在反比例函数
(x>0)的图象上时,设△ABC在第一象限部分的面积分别记做S1、S2(如图1、图2所示)D是斜边与y轴的交点,通过计算比较S1、S2的大小.
如图,正比例函数
的图象与反比例函数
在第一象限的图象交于
点,过
点作
轴的垂线,垂足为
,已知
的面积为1.
(1)求反比例函数的解析式;
(2)如果
为反比例函数在第一象限图象上的点(点
与点
不重合),且
点的横坐标为1,在
轴上求一点
,使
最小.
甲、乙两家商场进行促销活动,甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销.
(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?
(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=
),写出p与x之间的函数关系式,并说明p随x的变化情况;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.
如图,某一次函数与反比例函数的图象相交于A(-2,-5)、B(5,n)两点.
(1) 求这两个函数的解析式;
(2) 联结OA,OB.求△AOB的面积.
(本题6分)如图,一次函数y=ax+b的图像与反比例函数
的图像交于M、N两点。
求:(1)反比例函数与一次函数的解析式。
(2)根据图像写出反比例函数的值不小于一次函数的值的x的取值范围。
(本题6分)在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例.当电阻R=6欧姆时,电流 I=2安培.
(l)求I与R之间的函数关系式;
(2)当电流I="1.5" 安培时,求电阻R的值;
(3)如果电路中用电器限制电流不得超过10安培,那么用电器的可变电阻应控制在什么范围内?
已知:如图,在平面直角坐标系
中,直线AB分别与
轴交于点B、A,与反比例函数的图象分别交于点C、D,
轴于点E,
..
(1)求该反比例函数的解析式;
(2)求直线AB的解析式.