下列命题:
①一组对边平行,另一组对边相等的四边形是平行四边形;
②对角线互相垂直且平分的四边形是菱形;
③一个角为 且一组邻边相等的四边形是正方形;
④对角线相等的平行四边形是矩形.
其中真命题的个数是
A.1B.2C.3D.4
下列命题为真命题的是
A . 有两边及一角对应相等的两个三角形全等
B . 方程 有两个不相等的实数根
C . 面积之比为 的两个相似三角形的周长之比是
D . 顺次连接任意四边形各边中点得到的四边形是平行四边形
下列命题错误的是
A.若一个多边形的内角和与外角和相等,则这个多边形是四边形
B.矩形一定有外接圆
C.对角线相等的菱形是正方形
D.一组对边平行,另一组对边相等的四边形是平行四边形
下列说法错误的是( )
A.角平分线上的点到角的两边的距离相等
B.直角三角形斜边上的中线等于斜边的一半
C.菱形的对角线相等
D.平行四边形是中心对称图形
下列命题正确的是
A. |
在函数 中,当 时, 随 的增大而减小 |
B. |
若 ,则 |
C. |
垂直于半径的直线是圆的切线 |
D. |
各边相等的圆内接四边形是正方形 |
下列命题是假命题的是( )
A.经过两点有且只有一条直线
B.三角形的中位线平行且等于第三边的一半
C.平行四边形的对角线相等
D.圆的切线垂直于经过切点的半径
下列命题错误的是
A.对角线互相平分的四边形是平行四边形
B.对角线相等的平行四边形是矩形
C.一条对角线平分一组对角的四边形是菱形
D.对角线互相垂直的矩形是正方形
下面命题正确的是( )
A. |
矩形对角线互相垂直 |
B. |
方程x 2=14x的解为x=14 |
C. |
六边形内角和为540° |
D. |
一条斜边和一条直角边分别相等的两个直角三角形全等 |
下列命题是假命题的是
A . 不在同一直线上的三点确定一个圆
B . 角平分线上的点到角两边的距离相等
C . 正六边形的内角和是
D . 角的边越大, 角就越大
下列说法正确的是
①平行四边形既是中心对称图形,又是轴对称图形;②同一物体的三视图中,俯视图与左视图的宽相等;③线段的正投影是一条线段;④主视图是正三角形的圆锥的侧面展开图一定是半圆;⑤图形平移的方向总是水平的,图形旋转后的效果总是不同的.
A.①③B.②④C.③⑤D.②⑤
如图, 是 的直径, , 分别与 相交于点 , ,连接 ,现给出两个命题:
①若 ,则 ;
②若 ,记 的面积为 ,四边形 的面积为 ,则 ,
那么
A.①是真命题 ②是假命题B.①是假命题 ②是真命题
C.①是假命题 ②是假命题D.①是真命题 ②是真命题
下列命题为真命题的是
A.有公共顶点的两个角是对顶角
B.多项式 因式分解的结果是
C.
D.一元二次方程 无实数根
定理:三角形的一个外角等于与它不相邻的两个内角的和.
已知:如图, 是 的外角.求证: .
证法1:如图, (三角形内角和定理), 又 (平角定义), (等量代换). (等式性质). |
证法2:如图, , , 且 (量角器测量所得) 又 (计算所得) (等量代换). |
下列说法正确的是
A. |
证法1还需证明其他形状的三角形,该定理的证明才完整 |
B. |
证法1用严谨的推理证明了该定理 |
C. |
证法2用特殊到一般法证明了该定理 |
D. |
证法2只要测量够一百个三角形进行验证,就能证明该定理 |
下列命题中:
①如果 ,那么
②一组对边平行,另一组对边相等的四边形是平行四边形
③从圆外一点可以引圆的两条切线,它们的切线长相等
④关于 的一元二次方程 有实数根,则 的取值范围是
其中真命题的个数是
A.1B.2C.3D.4