初中数学

如图,五边形的内接正五边形,的直径,则的度数是  

来源:2019年山东省青岛市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图, P Q 分别是 O 的内接正五边形的边 AB BC 上的点, BP = CQ ,则 POQ =   

来源:2017年四川省凉山州中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近 (    )

A.

4 5

B.

3 4

C.

2 3

D.

1 2

来源:2019年四川省自贡市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,正六边形 ABCDEF 内接于半径为4的圆,则 B E 两点间的距离为        

来源:2016年江苏省盐城市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,正五边形 ABCDE 内接于 O P DE ̂ 上的一点(点 P 不与点 D 重合),则 CPD 的度数为 (    )

A.

30 °

B.

36 °

C.

60 °

D.

72 °

来源:2019年四川省成都市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,边长为 2 3 cm 的正六边形螺帽,中心为点 O OA 垂直平分边 CD ,垂足为 B AB = 17 cm ,用扳手拧动螺帽旋转 90 ° ,则点 A 在该过程中所经过的路径长为   cm

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,正六边形 ABCDEF 的边长为1,以点 A 为圆心, AB 的长为半径,作扇形 ABF ,则图中阴影部分的面积为   (结果保留根号和 π )

来源:2018年云南省昆明市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,正十二边形 A 1 A 2 A 12 ,连接 A 3 A 7 A 7 A 10 ,则 A 3 A 7 A 10 =   

来源:2016年江苏省连云港市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在正五边形中,相交于点,则的度数为  

来源:2018年陕西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,正五边形的边长为1,对角线相交于点,则四边形的周长为 

来源:2019年陕西省中考数学试卷(副卷)
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

在三角形纸片 ABC (如图1)中, BAC = 78 ° AC = 10 .小霞用5张这样的三角形纸片拼成了一个内外都是正五边形的图形(如图2).

(1) ABC =         °

(2)求正五边形 GHMNC 的边 GC 的长.

参考值: sin 78 ° 0 . 98 cos 78 ° 0 . 21 tan 78 ° 4 . 7

来源:2019年江苏省镇江市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径 d ,根据我国魏晋时期数学家刘徽的"割圆术"思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计 π 的值,下面 d π 的值都正确的是 (    )

A.

d = 8 ( 2 1 ) sin 22 . 5 ° π 8 sin 22 . 5 °

B.

d = 4 ( 2 1 ) sin 22 . 5 ° π 4 sin 22 . 5 °

C.

d = 4 ( 2 1 ) sin 22 . 5 ° π 8 sin 22 . 5 °

D.

d = 8 ( 2 1 ) sin 22 . 5 ° π 4 sin 22 . 5 °

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆 O 的半径为1,若用圆 O 的外切正六边形的面积 S 来近似估计圆 O 的面积,则 S =   .(结果保留根号)

来源:2018年四川省宜宾市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,用等分圆的方法,在半径为 OA 的圆中,画出了如图所示的四叶幸运草,若 OA = 2 ,则四叶幸运草的周长是  

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为(  )

A.π+1B.π+2C.π﹣1D.π﹣2

来源:2017年甘肃省兰州市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

初中数学正多边形和圆试题