如图, 是 的内接正六边形的一边,点 在 上,且 是 的内接正十边形的一边,若 是 的内接正 边形的一边,则 .
如图,有一个边长不定的正方形 ,它的两个相对的顶点 , 分别在边长为1的正六边形一组平行的对边上,另外两个顶点 , 在正六边形内部(包括边界),则正方形边长 的取值范围是 .
如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是
A. B. C. D.
如图,正六边形 的边长为6,以顶点 为圆心, 的长为半径画圆,则图中阴影部分的面积为
A. |
|
B. |
|
C. |
|
D. |
|
以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是
A. B. C. D.
刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆 的半径为1,若用圆 的外切正六边形的面积 来近似估计圆 的面积,则 .(结果保留根号)
已知: 是正方形 的外接圆,点 在 上,连接 、 ,点 在 上连接 、 , 与 、 分别交于点 、点 ,且 平分 .
(1)如图1,求证: ;
(2)如图2,在线段 上取一点 (点 不与点 、点 重合),连接 交 于点 ,过点 作 交 于点 ,过点 作 ,垂足为点 ,当 时,求证: ;
(3)如图3,在(2)的条件下,当 时,延长 交 于点 ,连接 ,若 的面积与 的面积的差为 ,求线段 的长.
如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为
A. B. C. D.
如图,用等分圆的方法,在半径为 的圆中,画出了如图所示的四叶幸运草,若 ,则四叶幸运草的周长是 .
如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径 ,根据我国魏晋时期数学家刘徽的"割圆术"思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计 的值,下面 及 的值都正确的是
A. |
, |
B. |
, |
C. |
, |
D. |
, |
如图,边长为 的正六边形螺帽,中心为点 , 垂直平分边 ,垂足为 , ,用扳手拧动螺帽旋转 ,则点 在该过程中所经过的路径长为 .
阅读下列材料:
已知:如图1,等边△ 内接于 ,点 是 上的任意一点,连接 , , ,可证: ,从而得到: 是定值.
(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;
证明:如图1,作 , 交 的延长线于点 .
△ 是等边三角形,
,
又 , ,
△ △
.
,是定值.
(2)延伸:如图2,把(1)中条件“等边△ ”改为“正方形 ”,其余条件不变,请问: 还是定值吗?为什么?
(3)拓展:如图3,把(1)中条件“等边△ ”改为“正五边形 ”,其余条件不变,则 (只写出结果).