初中数学

如图, AC O 的内接正六边形的一边,点 B AC ̂ 上,且 BC O 的内接正十边形的一边,若 AB O 的内接正 n 边形的一边,则 n =          

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,有一个边长不定的正方形 ABCD ,它的两个相对的顶点 A C 分别在边长为1的正六边形一组平行的对边上,另外两个顶点 B D 在正六边形内部(包括边界),则正方形边长 a 的取值范围是  

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是 (    )

A. 6 3 - π B. 6 3 - 2 π C. 6 3 + π D. 6 3 + 2 π

来源:2019年江苏省宿迁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,正六边形 ABCDEF 的边长为6,以顶点 A 为圆心, AB 的长为半径画圆,则图中阴影部分的面积为 (    )

A.

4 π

B.

6 π

C.

8 π

D.

12 π

来源:2021年四川省成都市中考数学试卷
  • 更新:2021-08-12
  • 题型:未知
  • 难度:未知

以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是 (    )

A. 2 2 B. 3 2 C. 2 D. 3

来源:2017年四川省达州市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆 O 的半径为1,若用圆 O 的外切正六边形的面积 S 来近似估计圆 O 的面积,则 S =   .(结果保留根号)

来源:2018年四川省宜宾市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知: O 是正方形 ABCD 的外接圆,点 E AB ̂ 上,连接 BE DE ,点 F AD ̂ 上连接 BF DF BF DE DA 分别交于点 G 、点 H ,且 DA 平分 EDF

(1)如图1,求证: CBE = DHG

(2)如图2,在线段 AH 上取一点 N (点 N 不与点 A 、点 H 重合),连接 BN DE 于点 L ,过点 H HK / / BN DE 于点 K ,过点 E EP BN ,垂足为点 P ,当 BP = HF 时,求证: BE = HK

(3)如图3,在(2)的条件下,当 3 HF = 2 DF 时,延长 EP O 于点 R ,连接 BR ,若 ΔBER 的面积与 ΔDHK 的面积的差为 7 4 ,求线段 BR 的长.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为 (    )

A. 24 3 - 4 π B. 12 3 + 4 π C. 24 3 + 8 π D. 24 3 + 4 π

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,用等分圆的方法,在半径为 OA 的圆中,画出了如图所示的四叶幸运草,若 OA = 2 ,则四叶幸运草的周长是  

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

已知圆内接正三角形的面积为 3 ,则该圆的内接正六边形的边心距是 (    )

A.2B.1C. 3 D. 3 2

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 内接于 O ,点 P AB ̂ 上,则 BPC 的度数为 (    )

A.

30 °

B.

45 °

C.

60 °

D.

90 °

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径 d ,根据我国魏晋时期数学家刘徽的"割圆术"思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计 π 的值,下面 d π 的值都正确的是 (    )

A.

d = 8 ( 2 1 ) sin 22 . 5 ° π 8 sin 22 . 5 °

B.

d = 4 ( 2 1 ) sin 22 . 5 ° π 4 sin 22 . 5 °

C.

d = 4 ( 2 1 ) sin 22 . 5 ° π 8 sin 22 . 5 °

D.

d = 8 ( 2 1 ) sin 22 . 5 ° π 4 sin 22 . 5 °

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,边长为 2 3 cm 的正六边形螺帽,中心为点 O OA 垂直平分边 CD ,垂足为 B AB = 17 cm ,用扳手拧动螺帽旋转 90 ° ,则点 A 在该过程中所经过的路径长为   cm

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

阅读下列材料:

已知:如图1,等边△ A 1 A 2 A 3 内接于 O ,点 P A 1 A 2 ̂ 上的任意一点,连接 P A 1 P A 2 P A 3 ,可证: P A 1 + P A 2 = P A 3 ,从而得到: P A 1 + P A 2 P A 1 + P A 2 + P A 3 = 1 2 是定值.

(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;

证明:如图1,作 P A 1 M = 60 ° A 1 M A 2 P 的延长线于点 M

A 1 A 2 A 3 是等边三角形,

A 3 A 1 A 2 = 60 °

A 3 A 1 P = A 2 A 1 M

A 3 A 1 = A 2 A 1 A 1 A 3 P = A 1 A 2 P

A 1 A 3 P A 1 A 2 M

P A 3 = M A 2 = P A 2 + PM = P A 2 + P A 1

P A 1 + P A 2 P A 1 + P A 2 + P A 3 = 1 2 ,是定值.

(2)延伸:如图2,把(1)中条件“等边△ A 1 A 2 A 3 ”改为“正方形 A 1 A 2 A 3 A 4 ”,其余条件不变,请问: P A 1 + P A 2 P A 1 + P A 2 + P A 3 + P A 4 还是定值吗?为什么?

(3)拓展:如图3,把(1)中条件“等边△ A 1 A 2 A 3 ”改为“正五边形 A 1 A 2 A 3 A 4 A 5 ”,其余条件不变,则 P A 1 + P A 2 P A 1 + P A 2 + P A 3 + P A 4 + P A 5 =   (只写出结果).

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

若正方形的外接圆半径为2,则其内切圆半径为 (    )

A. 2 B. 2 2 C. 2 2 D.1

来源:2017年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

初中数学正多边形和圆试题