初中数学

如图所示,已知正方形ABCD,直角三角形纸板的一个锐角顶点与点A重合,纸板绕点A旋转时,直角三角形纸板的一边与直线CD交于E,分别过B、D作直线AE的垂线,垂足分别为F、G.

(1)当点E在DC延长线上时,如图①,求证:BF = DG一FG;
(2)将图①中的三角板绕点A逆时针旋转得图②、图③,此时BF、FG、DG之间又有怎样的数量关系?请直接写出结论(不必证明).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在等边中,于点,点在边上运动,过点与边交于点,连结,以为邻边作□,设□重叠部分图形的面积为,线段的长为

(1)求线段的长(用含的代数式表示);
(2)当四边形为菱形时,求的值;
(3)求之间的函数关系式;
(4)设点关于直线的对称点为点,当线段的垂直平分线与直线相交时,设其交点为,当点与点位于直线同侧(不包括点在直线上)时,直接写出的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正方形ABCD中,点E,F分别在AD,DC上,且△BEF为等边三角形,下列结论:
①DE=DF;②∠AEB=75°;③BE=DE;④AE+FC=EF.
其中正确的结论个数有(    )

A.1个 B.2个 C.3个 D.4个
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,矩形中,,,的垂直平分线分别交于点,垂足为.
(1)如图1,连接.求证四边形为菱形,并求的长;
(2)如图2,动点分别从两点同时出发,沿各边匀速运动一周.即点停止,点停止.在运动过程中,已知点的速度为每秒5,点的速度为每秒4,运动时间为秒,当四点为顶点的四边形是平行四边形时,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,矩形纸片ABCD中,AB=6cm,BC=10cm,点E在AB边上,将△EBC沿EC所在直线折叠,使点B落在AD边上的点B′处,则AE的长为           cm.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图①在梯形ABCD中,AD∥BC。AB=DC
(1)如果点P,E和F分别是BC,AC和BD的中点,证明:AB=PE+PF
(2)如果点P是线段BC上任意一点(中点除外),PE∥AB,PF∥DC,如图②所示,那么AB=PE+PF这个结论还成立吗?请说明理由
(3)如果点P在线段BC的延长线上, PE∥AB,PF∥DC,其他条件不变,那么结论AB=PE+PF是否成立?直接写出结论,不必证明。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,丹东防汛指挥部发现鸭绿江边一处长500米高10米背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固,经调查论证,防洪指挥部专家组指定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:
(1)求加固后坝底增加的宽度AF
(2)求完成这项工程需要土石多少立方米?(结果保留根号)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知菱形ABCD的对角线AC=2,∠BAD=60°,BD边上有2013个不同的点p1,p2,…,p2013,过pi(i=1,2,…,2013)作PiEi⊥AB于Ei,PiFi⊥AD于Fi,则P1E1+P1F1+P2E2+P2F2+…P2013E2013+P2013F2013的值为            

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H, AE=CF,BE=EG。

(1)求证:EF//AC;
(2)求∠BEF大小;
(3)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.

(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;
(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;
(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,

(1)求的值为          .
(2)求证:AE=EP;
(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=5,AD=4.在进行如下操作时遇到了下面的几个问题,请你帮助解决.

(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2),请你求出AE和FG的长度.
(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为y,求在平移的整个过程中,y与x的函数关系式,并求当重叠部分面积为10时,平移距离x的值(如图3).
(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,将一张矩形纸片沿EF折叠,使点落在 边上的点B处;沿BG折叠,使点落在点D处,且BD过F点.
试判断四边形BEFG的形状,并证明你的结论.
当∠BFE为多少度时,四边形BEFG是菱形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.

(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;
(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;
(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质试题